
(empty first page)

OFB – Implementation
– chapter 8

Dr. Hartmut Schorrig
www.vishia.org 2024-10-09

1 Inner Functionality of the Converter Software
This first level chapter should show the inner functionality of the converting software to read
Open/LibreOffice diagrams, translate to and read IEC61499, and generate source code in the
target language.

Table of Contents
1 Inner Functionality of the Converter Software... .4

1.1 Data Model data classes.. .6
1.1.1 FBtype_FBcl... .7
1.1.2 FBlock_FBcl.. .8
1.1.3 Pin_FBcl and PinType_FBcl... .8
1.1.4 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl...................................... .11
1.1.5 FBexpr_FBcl: FBlock for expressions, presentation in FBlock_FBcl............................ .12
1.1.6 Module with FBlocks... .13
1.1.7 DType_FBcl and DTypeBase_FBcl... .14
1.1.8 Event tree node.. .16

1.2 Reading graphic files from different inputs, UFBglConv..18
1.2.1 Complete a module... .18

1.3 Read data from LibreOffice odg files.. .20
1.3.1 The file format of odg – content.xml.. .20
1.3.2 Read content.xml from the odg graphic file to internal data.. .22
1.3.3 Sorting XML data to Shapes for each page.. .23
1.3.4 Gather data for OdgModule page by page... .24
1.3.5 Build the data in FBcl data.. .27
1.3.6 Connect all FBcl pins due to connection of graphic pins.. .28
1.3.7 Preparation of Expressions from odg.. .30

1.4 Read data from Simulink.. .32
1.5 Read data from IEC61499 text files (fbd)... .34
1.6 Complete Preparation of the module... .36

1.6.1 Forward and backward propagation of data types.. .37
1.6.2 Identification of the event flow due to data flow.. .40
1.6.3 OFB: Build the event chain... .44
1.6.4 Completion of condition events... .49

1.7 Code generation due the to event flow.. .50
1.7.1 Using a templates for code generation with OutTextPreparer.......................................50
1.7.2 Tracking the event chain for a module‛s operation... .52
1.7.3 Access operation to dout, arguments.. .53
1.7.4 Conditional events in the operation... .54
1.7.5 Code generation for one FBlock, one line or statement in the chain.............................55
1.7.6 Expression to set elements in a variable.. .56
1.7.7 Set the module output... .57
1.7.8 Code generation for FBexpr... .58

1.8 All links to related documents.. .60
It may be not only for deep experts; Also if you
see this inner stuff you can better understand
the concepts.

Generally all this converter software is written
in Java. Only a standard Java is used (based

on Java-8, or Open-Jdk), with is standard
libraries, without additional libraries. The vishia
basic library vishiaBase.jar is used. This library
contains all basic functionality for example to
read XML.

1 Inner Functionality of the Converter Software 5

You find some information about the
vishiaBase.jar in https://vishia.org/Java

The sources for the vishiaBase.jar and for the
vishiaUFBgl.jar are able to download as zip
beside the jar files itself
(https://vishia.org/Java/deploy/, the version
archives are hosted on
https://github.com/JzHartmut

You can translated and executed the sources
for example in an Eclipse environment, in
debug mode.

This first level chapter should contain enough
hints to navigate in this sources. Some javadoc
links are contained here. Also the sources with
its generated javadoc contains explanations of
the classes and operations.

https://vishia.org/Java/index.html
https://github.com/JzHartmut
https://vishia.org/Java/deploy/

6 1 Inner Functionality of the Converter Software

1.1 Data Model data classes

Table of Contents
1.1 Data Model data classes.. .6

1.1.1 FBtype_FBcl... .7
1.1.2 FBlock_FBcl.. .8
1.1.3 Pin_FBcl and PinType_FBcl... .8

1.1.3.1 PinType_FBcl.. .8
1.1.3.2 Association between Event and Data Pins.. .9
1.1.3.3 Associaton between Input and Output pins... .9
1.1.3.4 Association between prepare and update events.. .9
1.1.3.5 Multiple pins... .10
1.1.3.6 Operations or Actions assigned to the Pins, code generation............................... .10

1.1.4 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl...................................... .11
1.1.5 FBexpr_FBcl: FBlock for expressions, presentation in FBlock_FBcl............................ .12
1.1.6 Module with FBlocks... .13
1.1.7 DType_FBcl and DTypeBase_FBcl... .14

1.1.7.1 Using DType_FBcl... .14
1.1.7.2 Using DTypeBase_FBcl... .15

1.1.8 Event tree node.. .16

 Figure 1: FBcl/FBlock_FBlockType_Pin_omd.png Overview class diagramm FBlock FBtype,
Pin_FBcl
The diagram Figure shows the relation
between Instances of FBlocks and its Types
and Pins. The FBlocks are the base elements
of the Function Block Diagrams. and also for
UML class diagrams. A class is presented also

with a org.vishia.fbcl.fblock.FBlock_FBcl (www)
because of its interconnections.

This diagram Figure shows the pins of Blocks
and their types only on the example of data
input pins. The other pin kinds are similar.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html

1.1 Data Model data classes 7

1.1.1 FBtype_FBcl

The class .../fblock/FBtype_FBcl (www)
presents a FBlock Type. There are some
standard types such as for expressions, event
join or rendezvous of events (E_REND in
IEC61499) and variable storage (F_MOVE in
IEC61499) and for compatibility all known
standardized FBlocks of the IEC61131 norm
(automation control, PLC = Programmable
Logic Control).

All functionality which is immediately given in
C/++ language for embedded control can be
wrapped with a FBlock_Type_FBcl to embed it
in a graphic. The FBlock type definition can be
written manually in textual form using the
IEC61499 coding (fbd file), or also designed in
a LibreOffice graphic (odg, OFB diagram).

Specific FBlock_Type_FBcl on user level can be
defined graphically with OFB graphic. It can be
stored as fbd file due to the IEC61499
standard.

The Java class FBlock_Type_FBcl presents the
interface data of this FBlock types. The content
(inner functionality) is either given immediately
in C/++ or the appropriate destination
language, or it is contained in a Module_FBcl,
see Java class
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Mo
dule_FBcl.html (www).

The FBlock_Type_FBcl has 6 arrays which
describes the Pins:

● dinPin : DinType_FBcl (www):

● doutPin: DoutType_FBcl (www)

● evinPin: EvinType_FBcl (www)

● evoutPin: EvoutType_FBcl (www)

● refPin: PinTypeRef_FBcl.html (www)

● portPin: PinTypePort_FBcl.html (www)

The data and event pins are also defined in
IEC61499. The refPin is an aggregation to
another FBlock, as source pin (as in UML). The
counterpart is the portPin, which is a
destination pin. In Uml either it is a really port
(any inner instance reference in a FBlock), or it
is THIS, which presents the whole referenced
FBlock.

For IEC61499 presentation (fbg, FBcl source
file) the refPin is mapped to a dinPin,
arranged after the other dinPin as input. On
runtime the reference value will be set in the
initialize phase with the init event. The data
flow is reverse to the UML presentation as
reference to the other instance or type.
Adequate it is with the portPin is mapped to a
doutPin because it delivers as output the
reference. The type of this dinPin and doutPin
are always designated in the IEC61499 files as
<:i:name.>__REF whereby <:i:name.> is the
name of the FBtype_FBcl.

The constructor FBtype_FBcl(kind, name,
module, OFB-project) (www) gets only the
name and the module where the FBtype_FBcl
is member on. The module is adequate the
package in UML. The kind is only used the
distinguish between some basically
functionality. The OFB-project is used only for
creation a proper DType_FBcl as data type for
the instance itself, stored in
FBtype_FBcl#dtypeTHIS (www). It is
intrinsically not necessary.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html#dtypeTHIS
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html#dtypeTHIS
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html#FBtype_FBcl-org.vishia.fbcl.fblock.FBlock_FBcl.Blocktype-java.lang.String-org.vishia.fbcl.fblock.Module_FBcl-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html#FBtype_FBcl-org.vishia.fbcl.fblock.FBlock_FBcl.Blocktype-java.lang.String-org.vishia.fbcl.fblock.Module_FBcl-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html#FBtype_FBcl-org.vishia.fbcl.fblock.FBlock_FBcl.Blocktype-java.lang.String-org.vishia.fbcl.fblock.Module_FBcl-org.vishia.fbcl.readSource.Prj_FBCLrd-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypePort_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypePort_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DoutType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html

8 1 Inner Functionality of the Converter Software

1.1.2 FBlock_FBcl

./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/
FBlock_FBcl.html (www) presents an instance
of a Function Block, It refers its
FBtype_FBcl(www) and it has an instance name.
The pins of a FBlock instance are then different
from the type pins, if multiple pins are existing.
Then the type has only one pin which name

ends with “0999” or “1999”, and the instance
pins counts from 0 or 1, for example X1..X3 for
three inputs. Also not all type pins may be
existing for the FBlock, if there are unsused.

The data types of a FBlock can differ from the
data types in the type pins, it can be
specialized.

1.1.3 Pin_FBcl and PinType_FBcl

The pins of a FBlock_FBcl(http://www.v
ishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/f
block/FBlock_FBcl.html) are based on
Pin_FBcl(http://www.vishia.
org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock
/Pin_FBcl.html) with the specificatio ns:

● din:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/Din_FBcl.html (www):

● dout:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/Dout_FBcl.html (=>www)

● evin:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/Evin_FBcl.html
(https://www.vishia.org/fbg/
docuSrcJava_FBcl/org/vishia/fbcl/fblock/E
vin_FBcl.html)

● evout:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/Evout_FBcl.html
https://www.vishia.org/fbg/
docuSrcJava_FBcl/org/vishia/fbcl/fblock/E
vout_FBcl.html)

● reference:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/PinRef_FBcl.html
(https://www.vishia.org/fb
g/docuSrcJava_FBcl/org/vishia/fbcl/fblock/
PinRef_FBcl.html)

● port:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock

/PinPort_FBcl.html
(https://www.vishia.org/f
bg/docuSrcJava_FBcl/org/vishia/fbcl/fblock
/PinPort_FBcl.html)

1.1.3.1 PinType_FBcl

The Pin_FBcl contains the connection to other
pins to other FBlocks whereas the referenced
PinType_FBcl(www) contains common
information to any pins of instances. It is the
base / super class for all pin types. It contains:

● fbt: The FBtype where the pin is member
of.

● namePin:
https://vishia.org/fbg/docuSrcJava_FBcl/or
g/vishia/fbcl/fblock/DinType_FBcl.htmltring:
It is the pin name same as in the instance
or ..1999 or ..0999 for a multiple pin.

● ixPin: int: The index in the array, and also
the bit number in some mask bits.

● kind:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/PinKind_FBcl.html
(https://www.vishia.org/f
bg/docuSrcJava_FBcl/org/vishia/fbcl/fblock
/PinKind_FBcl.html): an enum describes
the function.

● mAssocEvData: long: up to 64 event or data
associations. This is in IEC61499 the
designation

EVENT_INPUT

 step WITH x;

http://www.vishia. org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
http://www.vishia. org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
http://www.vishia. org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
http://www.v ishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
http://www.v ishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
http://www.v ishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dout_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Din_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Din_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Din_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBtype_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html

1.1 Data Model data classes 9

……

VAR_INPUT
x : REAL;

But also the back association, which data
uses which event, is stored here. evinPin
is associated to dinPin and vice versa, and
doutPin to evoutPin .

● mAssocInOut: long: up to 64 input and
output associations. This is not
immediately shown in IEC61499 but can
be determined. See also Error: Reference
source not found Error: Reference
source not found . For Standard
FBlocks the output event depends on the
state machine. Any output event which
may be occure on an input event because
of a state entry is contained in the mask
for the input event. For the Standard
FBlocks with a simple regular state
machine the input and the output events
are well associated, it is simple. Due to the
event association also the data association
are marked.

For a Composite FBlock consisting of an
usual graphical interconnection of FBlocks
the input – output -association are an
result of the connections.

Note that detail informations about event and
data input output mapping are contained in
the EccAction_FBcl to the states. This
informations are used for evaluation of the
inner content of a module.

● The fblock/DinoutType_FBcl (www)
contains also a data type information for
the dinPin and doutPin as well as also for

refPin and portPin:, see Error: Reference
source not found Error: Reference
source not found

● The EvinoutType_FBcl(www) contains te
association between prepare and update
event as number assocEvPrepUpd related
to the ixPin, see Error: Reference source
not found Error: Reference source not
found

● The
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/EvinoutType_FBcl.html(https://
www.vishia.o
rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fbl
ock/DinoutType_FBcl.html) contains also
references to
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/EccAction_FBcl.html(https://vishia.org
/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblo
ck/DinoutType_FBcl.html) for immediately
execution of actions to events, see also

● The
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/PinTypeRef_FBcl.html(https://
www.vishia.or
g/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fbl
ock/PinTypeRef_FBcl.html) refers with
FBtype_FBcl fbRef the type of the
reference.

1.1.3.2 Association between Event and
Data Pins

The Pins in FBlock_Type_FBcl are contained in
adequate arrays. The position in the arrays are
used for bit masks mAssociatedInOut and

PinType_FBcl#mAssociatedEvData www.

1.1.3.3 Associaton between Input and Output pins

This should be contained in EccAction_FBcl

1.1.3.4 Association between prepare and update events

The element
EvinoutType_FBcl#assocEvPrepUpd (www).

contains the index of the prepare event in a
given update event.

https://www.vishia.or g/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
https://www.vishia.or g/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
https://www.vishia.or g/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
https://vishia.org /fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://vishia.org /fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://vishia.org /fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://www.vishia.o rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://www.vishia.o rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://www.vishia.o rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html#assocEvPrepUpd
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html#assocEvPrepUpd
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html#mAssociatedEvData
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html#mAssociatedEvData
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EccAction_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EccAction_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html
./https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html

10 1 Inner Functionality of the Converter Software

1.1.3.5 Multiple pins

A multiple pin is pin definition in a
PinType_FBcl which can be represented by
more as one pin on the FBlock_FBcl instance.
This is typically used for expressions, adders or
such. In IEC61131 and also IEC61499 this is
not intended because the implementation
languages cannot deal with it. But this idea is
similar “variable number of arguments” in
programming languages such as C or Java.

For input via FBUMLgl it is desired and for
code generation from FBcl this is not a
problem. There is a tricky possibility to store a
pin in the FBtype_FBcl which presents multiple
inputs:

The name of the pin should end with ...0999
or ...1999, for example “X1999”.

The “999” suggests “many”. The number
should not be necessary as normal pin Name.

If the FBtype_FBcl has such a pin, any pin
number from ...0 or just ...1 is available and
refers the same pin “...0999” in the type. The
pins has all the same properties, but of course
different data connections, or different
constants, or also different data types just as
pins of instances have in comparison to the
type pins. The code generation can deal with
this situation.

If such an design should be implemented in
original IEC61499 environment (for example
fortis), a proper type should be present. Or just,
fortis can also be enhanced to deal with this
situation.

1.1.3.6 Operations or Actions assigned to the Pins, code generation

The EvinType_FBcl has usual an assigned
Ecc_Action_FBcl. On inner Pins of a module the
input event is related to a pin of type
Evout_FBcl, and also a data inputs are offered
with a Dout_FBcl, an output to the inner
FBlocks of the module, the actions are
assigned to the common class PinType_FBcl.
TODO it‛s better it is dedica ted.

The DoutType_FBcl has an assigned
Ecc_Action_FBcl if the inner logic of a
FBtype_FBcl comes from a Composite FBlock
(a FBlock with graphical content). Then this
action describes the access operation to this
output pin or also to more as one related output
pins, depending on code generation rules.

For Standard FBlocks the outputs are
immediately the output variables which are set

by the actions on the EvinType_FBcl, or
depending on the code generation, they are
simple access operations (“getter”).

Simple FBlocks has only one Action which
may be stateless. If it is stateless then it is an
expression. For that the EvoutType_FBcl has
assigned an Ecc_Action_FBcl which calculates
the expression tracked backward. The action or
just operation of a stateless Simple FBlock
with one output can be written in an expression
line.

If a Simple FBlock (also an expression) has
more as one output, the outputs are presented
by inner variables. It means the calculation of
such an expression is broken.

1.1 Data Model data classes 11

1.1.4 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl

Figure 2: FBcl/OdgGBlock_FBlock_FBcl_omd.png Overview class diagramm form Graphic Block
to FBlock_FBcl

This image shows the writing access to
FBlock_FBcl or FBtype_FBcl via Writing
wrappers, here from an Graphic blocks
(GBlock) as read from the odg-graphic.

A box in the graphic presents a so named
GBlock (graphic block), which is one of the
graphic presentation of a FBlock_FBcl or a
FBtype_FBcl . But a FBlock_FBcl or FBtype_FBcl
can be presented with more as one GBlock.
That's why it is important to associated the
OdgGBlock in an early step to the appropriate
FBlock_FBcl and its FBtype_FBcl or only to its
FBtype_FBcl if a class (type) is presented. But
this FBcl blocks are accessed via the
org.vishia.fbcl.fblockwr.Write_FBlock_FBwr
(www) .and Write_FBtype_FBwr (www). This is
a pattern to prevent writing (creating)
operations in the FBlock_FBcl and FBtype_FBcl
class, which is usual used in hence normally
offered only for read only usage. The write

operations with access also to private data of
FBlock_FBcl and FBtype_FBcl is done with an
inner class in FBlock_FBcl and FBtype_FBcl
WriteFB and WriteFBT, which can also access
private elements. This inner class is now the
super class of the Write_FBlock_FBwr and
Write_FBtype_FBwr . Hence the inner changing
operations for FBlock_FBcl and FBtype_FBcl are
reached via protected access. With this pattern
no public changing operations are able to
reach outside of this wrapping classes
Write_FBlock_FBwr and Write_FBtype_FBwr.

But after all XML data are gathered, on end of
gatherGraphic(xOdg) (www), neither the
Write_FBlock_FBwr and Write_FBtype_FBwr nor
the FBlock_FBcl and FBtype_FBcl are filled with
data. The data are only contained in OdgModule
and its OdgGBlock and OdgGPin instances due to
the graphic.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBtype_FBwr.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBtype_FBwr.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBlock_FBwr.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBlock_FBwr.html

12 1 Inner Functionality of the Converter Software

1.1.5 FBexpr_FBcl: FBlock for expressions, presentation in FBlock_FBcl

Figure 3: FBcl/FBexpr_omd.png class diagramm presentation of FBexpr with FBlock

An FBexpr_FBcl (www) is generally also a
FBlock. The difference is: The Code generation
does not base on a background functionality.
The FBtype_FBcl also referenced from an
FBexpr_FBcl has never a model referred (the

aggregation FBtype_FBcl#mdl is null) nor a able
to found existing target language code. The
code generation is done exclusively from the
information given in the graphic by this both
objects and their pin objects.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html

1.1 Data Model data classes 13

1.1.6 Module with FBlocks

Figure 4: FBcl/Module_FBcl.png: Module and its inner FBlocks

Some pages in Libre/OpenOffice-draw (or from
another input file) builds a
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Mo
dule_FBcl.html (www). The module can be
presented any time as Composite FBlock
type in IEC61499.

The image shows the important ones:

(1)The representation of the module to
outside with th e
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/FBlockType_FBcl.html(
https://vishia.org/fbg/docuSrcJava_FBcl/or
g/vishia/fbcl/fblock/FBlockType_FBcl.html)
is referenced as ifcFB(interface FBlock),
and is referenced as mdl from there (2).
This back reference can be removed if the
module is code generated and the inner
data are no more necessary. The interface
FBtype_FBcl remains then as library
module.

(3)The pins of the module to outer
counterpart to the pins in the ifcFB) are

contained in the referenced FBlock via fbp
(FBlock for pins). Whereby the input pins
are here output pins to the inner wiring
inside the module and vice versa. The
aggregated FBtype_Fbcl (4) is only
internally necessary, it is also mirrored in
respect to the pin direction to (1).

(5)The module consists of many FBlocks,
which are referenced all sorted by name
via idxFBlock. Also expressions are
FBlocks

(6)Right side it is shown that these FBlocks
are wired together with its pins, and also
wired to the module‛s I/O-pins.

(7)Only that FBtype_FBcl are indexed via
idxBlockType which are defined in this
module. Used FBtype_FBcl from FBlocks as
given are not contained in this index.

(8)Also States and actions are referenced,
see chapter TODO

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html

14 1 Inner Functionality of the Converter Software

1.1.7 DType_FBcl and DTypeBase_FBcl

1.1.7.1 Using DType_FBcl

Instances of
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dat
aType_FBcl.html (www) are referenced from
data pins, see chapter <:@ref:#173:8.1.3
Pin_FBcl and PinType_FBcl.>. They contains

● dt: The reference to the basic data typ e:
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock
/DataTypeBase_FBcl.html(http://
www.vishia.o
rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fbl
ock/DataTypeBase_FBcl.html)

● sizeArray:

0 for scalar,

1.. for a one dimensional array.

-1 arrayUndef not yet defined

-2 arrayFree Array with a variable size
but given on runtime

-3 arrayList A container as list

-4 arrayKeyList A container as sorted list.

The same instance of DType_FBcl is often used
by several pins of the same FBtype_FBcl or
FBlock_FBcl and also shared between some or
many pins inside a module, whenever the
same data type is used. Generally connected
pins refer the same instance of DType_FBcl on
both ends. For a
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Mo
dule_FBcl.html (www) and also inside
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBl
ock_FBcl.html (www) and
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBl
ockType_FBcl.html (www) there is a container
dtypes, which refers all non full specified
DType_FBclinstances used in the pins of the
FBlocks. Changing this only few instances of
Dtype_Fbcl can manipulate all data types using
it. For example a module can code generated
as scalar functionality or alternatively as vector,

or for float arithmetic, and alternatively for
double or integ er.

There are a few “fixed” Dtype_Fbcl instances.
That are these which refers the basic types
without array or container designations. Often
this instances are used, and then it is the same
in the pins of FBtype_FBcl and Fblock_Fbcl.

Instances of DType_FBcl which are not full
dedicated in a used FBtype_FBclare never
copied to the FBlock_FBcl, because they should
be adapted (changed). That is especially if the
DTypeBase_FBcl is a non full specified data type
such as “ANY_NUM” instead float, int etc. That is
typical for some expressions or mathematically
operations. This is done first by creating a
clone of the DType_FBcl instance for the pins of
a FBlock_FBcl from the pins of the FBtype_FBcl.
The clone is necessary because afterwards the
DType_FBcl can be changed, independent of the
DType_FBcl instances in the FBtype_FBcl. This
changes are done to get more deterministic
types. Either the dt reference in a DType_FBcl
can be changed, or by replacing the instance of
DType_FBcl in all appropriate pins.

But while forward and backward propagation
the number of different instances of DType_FBcl
is reduced.

For the last action all DType_FBcl instances
contains a reference:

● usingPins: Reference to all pins using this
type. It is null (not existing) if all DType_FBcl
refers a deterministic type. This reference
is used to change a changed DType_FBcl on
one pin in all other appropriate pins.

● deps: This container references all
DType_FBcl which are not the same but
depending in some characteristic. If for
example one DType_FBcl is complex,
another is real, or one is scalar and the
other is an array, but both should have the
same numeric type. then changing the

http://www.vishia.o rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
http://www.vishia.o rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
http://www.vishia.o rg/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataType_FBcl.html

1.1 Data Model data classes 15

type in the one DType_FBcl should be done
also in all depending DType_FBcl instances.

1.1.7.2 Using DTypeBase_FBcl

All types in fblock/DataTypeBase_FBcl((www))
are designated by a public final char

typeChar. One char is enough and concisely

The basic types without container and array
specifications are either standard types,
contained in DTypeBase_Fbcl.stdTypes.

Or they are the reference type to used
FBtype_FBcl. In IEC61499 these are
“ANY_DERIVED” types, applied to “TYPE
END” language constructs. In the UFBgl these
should be able to map to specific FBtype_FBcl.
The DTypeBase_FBcl contains a field typeRef for
this reference. The DTypeBase_FBcl instance for
a specific FBtype_FBcl.reference is always
created for the FBtype_FBcl itself referenced
their with dtypeTHIS.

http://www.vishia.org/fbg/...
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html

16 1 Inner Functionality of the Converter Software

1.1.8 Event tree node

The event connections in a module builds firstly
a tree of event nodes. But this tree is also
characteristics by some cross event
connections.

For code generation the tree of event nodes is
determining the order of execution. Primary the
order of execution is only the event flow. But
this is too detailed, not able to overview. Also
the algorithm of roll out the event flow is not
very obviously.

That's why after build all event connections a
tree of event node is built. This tree structure
has an Iterator which offers the member of
this event tree node in a defined order which is
used also for code generation as also in the
event connection part of the fbd file
(IEC61499). But for the cross connections in
the event flow there are some special cases.

Look on the following example:

Figure 5: odg/exmpEvTree1.png

The image shows a simple expression relation,
but with a boolean event expression: The
FBexpr a2 and follow does only act if the
expression evaluates to true. But this is not
primary important for the following
considerations, only for code generation.

The shown data connections and the drawn
event connection results in the following event
flow, see 1.6.2 Identification of the event
flow due to data flow page 40:

Figure 6: odg/exmpEvTree1_events.png

The data connections are shown in gray.

The fbd output file (IEC61499) shows the
following event connections:

EVENT_CONNECTIONS

calc TO a3.prep

 a3.prepO TO y2.prep

 y2.prepO TO calcO

calc TO cond1.prep

 cond1.true TO a2.prep

 a2.prepO TO condO

 a2.prepO TO i1_X.prep

 i1_X.prepO TO i1.prep

upd TO i1.upd

upd TO updO

END_CONNECTIONS

The indentation allows detect the tree structure
of the event connection. Sorting of connections
are always alphabetically, hence first a3.prep is
shown. The event connection chain continues
with y2.prep in this line till calcO. The second
connection from calc goes to cond1.prep,
continues with its true event output, forces
condO, and also the preparation of the state
variable i1, which is updated with i1.upd.

This is also exact the order of generated code.

How the event connections are sorted? Using
an fblock.EvoutTreeNode_FBcl (www):

The next image right side shows the complete
instance view of the OFB module in the images
Figure 5: odg/exmpEvTree1.png and Figure
6: odg/exmpEvTree1_events.png.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutTreeNode_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutTreeNode_FBcl.html

1.1 Data Model data classes 17

Figure 7: FBcl/EvoutTreeNode_Usage.png

The image shows as class/instance diagram
the first two event connections of Figure 5:
odg/exmpEvTree1.png from calc to the
FBexpr cond1 and then from its output true to
the next a2.prep.

The information for connecting events are
repeated here. The connection is a property of
the pins already, and twice given by
designation of the evout - evin pair in the
fblock.EvoutTreeNode_FBcl (www). Also the

relation between evin and evout of the same
FBlock_FBcl can be traced by the operation
fblock.Evin_FBcl#iterCorrespondEvout(...)
(www). Just this is done to built this event tree.

The intrinsic information is just the order of
event connections which is also the order of
execution in the code generation, see 1.7.2
Tracking the event chain for a module‛s
operation page 52. This gets important also
for Join of events:

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html#iterCorrespondEvout-boolean-?
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html#iterCorrespondEvout-boolean-?
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutTreeNode_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutTreeNode_FBcl.html

18 1 Inner Functionality of the Converter Software

1.2 Reading graphic files from different inputs, UFBglConv

The org.vishia.fbcl.UFBglConv (www) is the
main class to convert several input files, and
outputs IEC61499 files and code generation for
the target system.

This class has a main(String[] args) entry to
invoke with java command line. Additional

● UFBglConv#smain(...) (www) and

● UFBglConv#amain(CmdArgs...) (www)

are given to call it from a Java application
inside, and to call it from a JztxtCmd script.

After parsing the commands execute(...) is
called. This operation does the following:

● First, all input files in CmdArgs#listFileIn
from the cmdline arg -i:path/to/input.file
were processed, the type (extension) of the
input file determines the reading conversion.
odg-files are read, see chapter .

● The data of this first step are stored in the
Write… instances of TODO

● all parsed modules are stored in
Prj_FBCLrd#idxWriteModules.

Whereby the type of the conv

1.2.1 Complete a module

Completion of a module is done whenever the
module is read completely, before the next
module is read. The operation
Write_Module_Fbwr#completeMdl(). does the
following actions:

● completeMissingEventPinsInTypes():

● postPrepareFBlocks()

● postPrepareDtypesToIfc

● completeFBoper() for all listFBoper

● propgDtypes(…): This is the essential
operation to equalize the used Dtype_Fbcl
instances via all connections and depending
pins. Non full determined data types in a
FBtype will be determined for the FBlock
instances due its connections.

● Dataflow2Eventchain_Fbrd#prc(): This is the
essential operation to create the correct
execution order of all internal operations of the
module, described by the event flow. The event
flow follows the data flow. See chapter TODO

● completeAllFBlockTypePinsInModule(): All
FBtype should have the pins, adequate read
library modules.

● completeAllMdlPins(null): establishes the
pins for the FBtype of the module

● createAllMdlIfcPins(): The FBtype_FBcl
instance for the module‛s interface is the mirror
of the internal Module_FBcl#fbp pin - FBlock and
its associated FBtype_FBcl. The last ones are
created with gathering the pins of the module in
the module‛s implementation graphic. The pins
are mirrored because for example an evin of
the module seen from outside is used internally
in the module as evout as source for the
internal wiring.

This operation builds the pins for the module‛s
interface FBtype_FBcl instance from the given
internal pins of the module. For an existing
EvoutType_FBcl as input of the module or output
for internal using a EvinType_FBcl with the same
name is created, etc.

● setExprOperatorToPins();

● adjustFBexrFnDtypes():

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/UFBglConv.html#%23amain-org.vishia.fbcl.UFBglConv.CmdArgs-
../docuSrcJava_FBcl/org/vishia/fbcl/UFBglConv.html#%23amain-org.vishia.fbcl.UFBglConv.CmdArgs-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/UFBglConv.html#smain-java.lang.String:A-java.lang.Appendable-java.lang.Appendable-
../docuSrcJava_FBcl/org/vishia/fbcl/UFBglConv.html#smain-java.lang.String:A-java.lang.Appendable-java.lang.Appendable-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/UFBglConv.html
../docuSrcJava_FBcl/org/vishia/fbcl/UFBglConv.html

1.2 Reading graphic files from different inputs, UFBglConv 19

20 1 Inner Functionality of the Converter Software

1.3 Read data from LibreOffice odg files

Table of Contents
1.3 Read data from LibreOffice odg files.. .20

1.3.1 The file format of odg – content.xml.. .20
1.3.2 Read content.xml from the odg graphic file to internal data.. .22
1.3.3 Sorting XML data to Shapes for each page.. .23

1.3.3.1 Gather Pages and the title... .23
1.3.3.2 Gather all shapes per page... .23
1.3.3.3 Evaluate the shapes.. .23
1.3.3.4 Evaluating Pin texts... .24

1.3.4 Gather data for OdgModule page by page... .24
1.3.4.1 Associate the page to a module.. .25
1.3.4.2 Aggregation to FBcl blocks via Writer.. .26

1.3.5 Build the data in FBcl data.. .27
1.3.6 Connect all FBcl pins due to connection of graphic pins.. .28
1.3.7 Preparation of Expressions from odg.. .30

1.3.7.1 createExprPins(...) createExprPins(…).. .30
1.3.7.2 createExprPinAndKpin.. .31

1.3.1 The file format of odg – content.xml

Figure 8: OFB/ContentOfodg.zip.png

Let's have first a look to the file format from
Libre Office. The odg format is a zip archive.
You can add the extension zip, and then look
into with a zip utility.

Right side you see a screen shot from the
opened zip file (with Total Commander). The
zip file contains three important xml files.

● content.xml contains the graphic itself

● styles.xml contains the style sheet
settings. If you want to copy your settings
between some files, you can copy this
styles.xml inside the two zip file. It seems
to be safe.

● settings.xml is not relevant for the content
itself, also the other files are helper for the
Office tool.

Now have a look inside the content.xml
(pressing F3 in Total Commander to view to
pure textual content:

It is one very long line without structure not well
human readable, but it is well formed XML.

Figure 9: ContentOfodg-content-xmlPure.png

1.3 Read data from LibreOffice odg files 21

But there is an option in LibreOffice: Menu
"Tools -> Options", Select "LibreOffice ->
Advanced", press Button [Open Expert
Configuration], then search "PrettyPrinting" or
select in the configuration tree
"org.openoffice.Office.Common -> Save ->
Document", select the property "PrettyPrinting"
and set it to true. See also

https://wiki.documentfoundation.org/Document
ation/ODF_Markup/en#Pretty_Printing

Then the content.xml will be stored with some
more lines. It is able to overview. But regard, a
newline inside a <text:p> may create at least
one space. Hence the <text:p> till </text:p> is
still written in a long line (but not too long).

After beautification it looks like (as textual snippet):

<draw:g>
 <draw:custom-shape draw:style-name="gr21" draw:text-style-name="P1" draw:layer="layout"
 <draw:enhanced-geometry svg:viewBox="0 0 21600 21600" draw:type="rectangle" draw:enhan
 </draw:custom-shape>
 <draw:custom-shape draw:style-name="gr22" draw:text-style-name="P2" draw:layer="layout"
 <text:p text:style-name="P2">ClassA name1</text:p>
 <draw:enhanced-geometry svg:viewBox="0 0 21600 21600" draw:type="rectangle" draw:enhan
 </draw:custom-shape>
 <draw:custom-shape draw:style-name="gr23" draw:text-style-name="P7" xml:id="id18" draw:i
 <text:p text:style-name="P7">aggrCX</text:p>
 <draw:enhanced-geometry svg:viewBox="0 0 21600 21600" draw:glue-points="10800 0 0 1080
 </draw:custom-shape>
</draw:g>

This is right side truncated, it shows the
graphical "group" with the "ClassA name1" as
shown in page . You can see here also the
aggregation aggrCX. The style names are not
written immediately plain here, instead a

referencing is done, the draw:style-name="gr23"
describes some possible direct formatting
properties and the references to the knwon
style "ofpAggrRight" as you see in the
content.xml in the <style...> part.

<style:style style:name="gr23" style:family="graphic" style:parent-style-name="ofpAggrRight">
 <style:graphic-properties draw:marker-start-width="0.24cm" draw:marker-end-width="0.24cm" f
 <style:paragraph-properties style:writing-mode="lr-tb"/>
 </style:style>

This is all understandable and comprehensible. Hence read out of data is only a problem of
sorting.

https://wiki.documentfoundation.org/Documentation/ODF_Markup/en#Pretty_Printing
https://wiki.documentfoundation.org/Documentation/ODF_Markup/en#Pretty_Printing

22 1 Inner Functionality of the Converter Software

1.3.2 Read content.xml from the odg graphic file to internal data

The org.vishia.xmlReader.XmlJzReader (www)
contained in the vishiaBase.jar is used to read
the XML data. This class can select determined
parts from the XML file, read not all. Therefore
a configuration file is used. The data are stored
in a common or a specific data class. A
possible common class is org.vishia.
xmlReader.XmlDataNode (www). But this class
is not used here (it is used for the LibreOffice to
VML converter).

Instead a specific destination class for the XML
data was created: org.vishia.fbcl.readOdg. xml.
XmlForOdg (www). The given instance of this
class is filled from the XmlJzReader by reading
the content.xml. The data are organized proper
to the internal XML tree structure. Reading the
content.xml is controlled by the config file
fbcl/readOdg/xml/ odgxmlcfg.xml (www) as part
of the jar file vishiaUFBgl.jar.

presents the access to the read XML data. This
class was automatically created by calling the
tool suite on .../RWTrans/XmlJzReader.html
(www) but adapted afterwards. The base class
which should not be adapted is
readOdg.xml.XmlForOdg_Base (www), this
class contains the data read from XML. The
data structure in this class follows the structure
of the fbcl.readOdg.xml.odgxmlcfg.xml (www)
which controls interpreting of the XML data.
The class to read the XML file is
org.vishia.xmlReader.XmlJzReader (www) in
the vishiaBase.jar file. It is called in
fbcl.readOdg.xml.XmlForOdg_Base (www).

The following code snippet shows how the
XmlJzReader is invoked:

/**Reads completely the content.xml from the
* and stores the data in the returned ins...
* @param fInOdg The file to read
* @return the read data from XML
* @throws IOException On file read problems
*

private XmlForOdg readXml (File fInOdg) { ...
 String sFileOdg = fInOdg.getName();
 XmlJzReader xmlReader = new XmlJzReader();
 xmlReader.setNamespaceEntry("xml", "XML");
 xmlReader.readCfgFromJar(XmlForOdg.class,
 "odgxmlcfg.xml");
 XmlForOdg_Zbnf data = new XmlForOdg_Zbnf();
 xmlReader.setDebugStopTag("text:span");
 xmlReader.openXmlTestOut(new File(this....
 xmlReader.readZipXml(fInOdg, "content.xml",
 return data.dataXmlForOdg;
}

The following text is a data snippet, gotten from
the Variable View in Eclipse. odg is the
returned instance. The text after a name is the
toString() output, which contains sometimes
only TODO (not used till now) but you can for
example see the content of a draw_page, and
hence the XML structure. - It is only an
illustration.

xOdg: XmlForOdg @unknown:0 XmlForOdg 251 1
 idxStyle: Map<String,String> null null
 office_document_content: XmlForOdg$Office_d
 office_automatic_styles: XmlForOdg$Office_
 office_body: XmlForOdg$Office_body TODO to
 office_drawing: XmlForOdg$Office_drawing
 draw_page: List<Draw_page> [TODO toStrin
 [0]: Object TODO toString XmlForOdg$Dra
 draw_connector: List<Draw_connector> [
 draw_custom_shape: List<Draw_custom_sh
 draw_frame: List<Draw_frame> null null
 draw_g: List<Draw_g> [(9.5cm, 4.1cm) +
 draw_master_page_name: String Default
 draw_name: String page1 String 287 165
 draw_polygon: List<Draw_polygon> [4.2c
 draw_polyline: <unknown type> null nul
 draw_style_name: String dp1 String 289
 [1]: Object TODO toString XmlForOdg$Dra
 [2]: Object TODO toString XmlForOdg$Dra
 [3]: Object TODO toString XmlForOdg$Dra
 office_font_face_decls: XmlForOdg$Office_f
 office_scripts: String null null 16552
 office_version: String null null 16552
 office_version: String 1.3 String 264 1655

As you see, the data structure follows the XML
content. The data are mapped from XML to this
internally Java data. The mapping depends
from the content of the odgxmlcfg.xml file, which
controls the XmlJzReader, but this cfg.xml is so
completely as necessary.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
https://vishia.org/fbg/srcJava_vishiaFBcl/java/org/vishia/fbcl/readOdg/xml/odgxmlcfg.xml
../../srcJava_vishiaFBcl/java/org/vishia/fbcl/readOdg/xml/odgxmlcfg.xml
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
https://vishia.org/Java/html/RWTrans/XmlJzReader.html
../../Java/html/RWTrans/XmlJzReader.html
https://vishia.org/fbg/srcJava_vishiaFBcl/java/org/vishia/fbcl/readOdg/xml/odgxmlcfg.xml
../../srcJava_vishiaFBcl/java/org/vishia/fbcl/readOdg/xml/odgxmlcfg.xml
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg.html
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlDataNode.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlDataNode.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlDataNode.html
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html

1.3 Read data from LibreOffice odg files 23

1.3.3 Sorting XML data to Shapes for each page

After reading the XML file the operation
OdgReader#gatherGraphic(xOdg) (www) is
called. This evaluates the whole XML content,
but sorted to pages, because in XML the data
are sorted also in page nodes:

1.3.3.1 Gather Pages and the title

<office:body>
 <office:drawing>
 <draw:page draw:name="page1" ...
 <draw:custom-shape ...

For each page, a new OdgPage(nr, xpage, xOdg)
is created and first, page.gatherTitleDisabled
Area(xpage, xOdg); is called. The title is the box
with ofbTitle. It contains the module name for
this page and hence it is essential to associate
the page to the module. If the module name is
commented with leading #, then this page is
commented and hence skipped. The module
name is essential. Maybe only determined
modules are read from XML, controlled by the
command line option -im:ModuleName. Pages for
each one module should be one after another.
If another module starts with a new page, the
module is OdgReader#completeModule (www)

The disabled areas in the graphic are important
to prevent evaluation of disabled parts.

1.3.3.2 Gather all shapes per page

If the page is not skipped, then first all shapes
are gathered and sorted by its style
information, with its texts and coordinates. This
is a formally operation, done by
OdgPage#gatherShapes(xpage, xOdg) (www)
It evaluates all <draw:custom-shape…,
<draw:polygon… and <draw:frame… from the
page, and also <draw:g to evaluate this
elements in a group.

From all this elements first the x-y-coordinates
are detected. If they are in a range of a
disabled area (which is a shape with
ofbDisabledArea style), then the shape is
ignored. This is the functionality described in
html / Handling-OFB_VishiaDiagrams.pdf:

1.2.1 GBlock styles, ofb page 8 and html /
Handling-OFB_VishiaDiagrams.pdf: 1.5.1
Module in file organized in pages page 19.

Then all other properties of the shape are
gathered from XML and stored in instances of
OdgShape (www). Any of a shape in the
graphic is formally mapped to an OdgShape
instance. This can be a pin, a fblock etc. The
OdgShape instances are stored sorted to its kind
in some lists inside OdgPage (www).

For the shapes the draw style is evaluated (in
XML the attribute draw:style-name="..." in the
shape). Via the
OdgReader#idxFBkindFromStyle (www) and
also OdgReader#idxPinkindFromStyle (www)
the textual given style name is transferred to
the internal used enum.

1.3.3.3 Evaluate the shapes

The approach is, reading all shapes and
associating to the internal data of the module
due to their graphic style and also due to there
relative position. A primary idea for associating
pins to blocks was building a group in
LibreOffice graphic. But grouping should be
seen only as graphic possibility, not for
semantic. The position, the pin is inside the
shape which represents the block, is the
intrinsically possibility of association.

The graphic from xOdg is evaluated page by
page.

As first step in the graphic a shape with the
style ofbTitle is searched in the page. The
textual content till : is the module name. If it
starts with # the page is disabled (not to
evaluate).

Secondly all shapes are evaluated which are
block shapes, means they build the frame for
blocks. This is checked in
gatherFBlockShape(...shape...). This is done
first outside and then inside of groups.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#idxPinkindFromStyle
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#idxPinkindFromStyle
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#idxFBkindFromStyle
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#idxFBkindFromStyle
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgPage.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgPage.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgShape.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgShape.html
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-Module-Pages
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-Styles-ofb
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgPage.html#gatherShapes-org.vishia.fbcl.readOdg.xml.XmlForOdg.Draw_page-org.vishia.fbcl.readOdg.xml.XmlForOdg-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgPage.html#gatherShapes-org.vishia.fbcl.readOdg.xml.XmlForOdg.Draw_page-org.vishia.fbcl.readOdg.xml.XmlForOdg-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#completeModule(...)
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#completeModule(...)
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-

24 1 Inner Functionality of the Converter Software

The graphic styles which build block shapes
are ofbFBlock, ofbClass, ofbMldPins and
ofbExpression.

After gathering and sorting the shapes there
are evaluated. First this is done for the non-pin
shapes. Especially first the GBlock shapes with
style ofbFBlock, ofbClass, and then
ofnNameTypeFBlock and ofnClassTypeName
(deprecated). After this operation you have
instances of OdgGBlock which referes to
FBlock_FBcl and FBtype_FBcl in your
Write_Module_FBwr. This, first the OdgGBlock
are necessary to associate the pins.

The pin shapes which are all stored in
OdgPage#shPin are evaluated after detecting
alls FBlock shapes. So their OdgGBlock is
already stored with its coordinates able to find
in ReadOdg.listBlocks_x and _y. the operation
ReadOdg#searchFbg(...) searches the
associated GBlock by coordinates to each
evaluated pin. The pin- FBlock association is
done with the pin graphic coordinates. At least
one rectangle corner point should be inside the
rectangle box of the GBlock.

Pins which have not a proper GBlock found
can be either a free variable in the module, as
ofpVout... or ofpZout..., or also as simple
ofPin... with a text designation ...=$ or ...=&
on end. Or an error messages is shown:
"Warning ...Pin @...position outside FBlock
shape"..

● ofbAccess as style of the found GBlock
forces adding the pin with
OdgReader#gatherAccessPin(...).

● ofbExpression as style of the found GBlock
forces adding via
OdgReader#gatherExprPin(...)

● All other pins are added via
OdgReader#gatherFBlockPin(...) to the found
OdgGBlock.

● But pins of style ofpExprPart are sorted as
extra shape kind in OdgShape#shExprPart.
They are also added to the found GBlock with
OdgReader#gatherExprPin(...) without
selection of the GBlock kind, but with test of the
GBlock kind.

● Pins of style ofpExprOut are sorted as extra
shape kind in OdgShape#shExprOut. They can
be applied either to a GBlock if style
ofbExpression or also ofbAccess as their
output. Hence, the kind of the found GBlock is
tested, and either ... here is a little bit TODO
cleanup in sw.

1.3.3.4 Evaluating Pin texts

The text inside a pin shape is evaluated on
creation of the OdgGPin instance while setting
the element OdgGPin#nameType. Then all
information from the graphic are contained in a
prepared form in the OdgGpin instance, ready
to use to later create the adequate Pin_FBcl
instances with the correct derived types.

The Evaluation of the pin texts is done in the
constructor of the type OdgNameTypeArray,
which contains all semantic relevant
information given in the text of the graphic
shape for OFB usage. The syntax and meaning
es explained in html / Handling-
OFB_VishiaDiagrams.pdf: 1.3 Texts in
graphic blocks and pins page 12.

TODO explain short meaning of the info.And
how it is parsed.

1.3.4 Gather data for OdgModule page by page

The shapes or boxes with style ofbFBlock or
also ofbClass are contained in the current
odgPage.shFBlock (www). This container is
evaluated before the inner shapes of a GBlock
as for example odgPage.shPin are evaluated.

First a OdgGBlock is created, and then via
calling OdgReader.html#assignFBlock Name
TypeIdCreateFBlock(...) (www) the appropriate
FBlock_FBcl or FBtype_FBcl is searched in the
project or it is created. But it is referenced via

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgGBlock.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#assignFBlockNameTypeIdCreateFBlock-org.vishia.fbcl.readOdg.OdgShape-org.vishia.fbcl.readOdg.OdgGBlock-org.vishia.fbcl.readOdg.OdgModule-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#assignFBlockNameTypeIdCreateFBlock-org.vishia.fbcl.readOdg.OdgShape-org.vishia.fbcl.readOdg.OdgGBlock-org.vishia.fbcl.readOdg.OdgModule-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgGBlock.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgPage.html#shFBlock
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgPage.html#shFBlock
../pdf/Handling-OFB_VishiaDiagrams.pdf
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-PinTextSyntax

1.3 Read data from LibreOffice odg files 25

the Writer classes, see 1.1.4 Write instances
for FBlock_FBcl, FBtype_Fbcl, Module_FBcl

1.3.4.1 Associate the page to a module

After the Shapes are built for each one page
inside the operation OdgReader#
gatherGraphic(xOdg) (www), and after first the
ofbTitle is scanned, the page is associated to
the module, which name is contained in the
ofbTitle box.

The module name is searched in
OdgReader#idxOdgMdl (www) idxOdgMdl. It is
found or new created and stored there as
OdgModule (www) OdgModule instance. Each
page completes the module internal data.
The next image should give an overview over
that data:

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#idxOdgMdl
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#idxOdgMdl
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-

26 1 Inner Functionality of the Converter Software

1.3.4.2 Aggregation to FBcl blocks via Writer

Figure 10: FBcl/OdgGBlock_FBlock_FBcl_omd.png Overview class diagramm form Graphic Block
to FBlock_FBcl

This image shows the existing Graphic blocks
(GBlock) as read from the odg-graphic and its
relationships to the FBcl classes. The FBcl
classes are created here, but not completed.

A box in the graphic presents a so named
GBlock (graphic block), which is one of the
graphic presentation of a FBlock_FBcl or a
FBtype_FBcl . But a FBlock_FBcl or FBtype_FBcl
can be presented with more as one GBlock.
That‛s why it is important to associated the
OdgGBlock in an early step to the appropriate
FBlock_FBcl and its FBtype_FBcl or only to its
FBtype_FBcl if a class (type) is presented. But
this FBcl blocks are accessed via the
org.vishia.fbcl.fblockwr.Write_FBlock_FBwr
(www) .and Write_FBtype_FBwr (www). This is
a pattern to prevent writing (creating)
operations in the FBlock_FBcl and FBtype_FBcl
class, which is usual used in hence normally
offered only for read only usage. The write

operations with access also to private data of
FBlock_FBcl and FBtype_FBcl is done with an
inner class in FBlock_FBcl and FBtype_FBcl
WriteFB and WriteFBT, which can also access
private elements. This inner class is now the
super class of the Write_FBlock_FBwr and
Write_FBtype_FBwr . Hence the inner changing
operations for FBlock_FBcl and FBtype_FBcl are
reached via protected access. With this pattern
no public changing operations are able to
reach outside of this wrapping classes
Write_FBlock_FBwr and Write_FBtype_FBwr.

But after all XML data are gathered, on end of
gatherGraphic(xOdg) (www), neither the
Write_FBlock_FBwr and Write_FBtype_FBwr nor
the FBlock_FBcl and FBtype_FBcl are filled with
data. The data are only contained in OdgModule
and its OdgGBlock and OdgGPin instances due to
the graphic.

(empty page)

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgReader.html#gatherGraphic-org.vishia.fbcl.readOdg.xml.XmlForOdg-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBtype_FBwr.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBtype_FBwr.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBlock_FBwr.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_FBlock_FBwr.html

1.3 Read data from LibreOffice odg files 27

1.3.5 Build the data in FBcl data

The data in FBlock_FBcl and FBtype_FBcl as well
as also in Pin_FBcl and PinType_FBcl and its
derived classed and also in Module_FBcl are
designated as FBcl data. FBcl is the Function
Block connection language which is
independent of the Libre/OpenOffice odg
graphic and the base for the IEC61499
presentation and also for code generation.

The Module_FBcl and also FBlock_FBcl,
FBtype_FBcl are created on creation of the
Graphic representations OdgGBlock and
OdgGPin. But they are not complelely filled.

The completion of the FBcl data from the
graphic representation is done in

readOdg.OdgModule#buildFbgData(...) (www).
This does the following:

● create all FBlock pins:
OdgModule#createFBPins_duetoGBlockPi
ns() (www).

● createFBPins_duetoGBlockPins()

● createFBclConnectionsFromGraphic()

● buildAssociatedMdlEventDataPins()

● buildAssociatedFBtypeEventDataPins()

● Write_Module_FBwr#completeMdl()

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#createFBPins_duetoGBlockPins()
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#createFBPins_duetoGBlockPins()
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#createFBPins_duetoGBlockPins()
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#buildFbgData()
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#buildFbgData()

28 1 Inner Functionality of the Converter Software

1.3.6 Connect all FBcl pins due to connection of graphic pins

The graphic connections are done page per
page of the odg file after reading the shapes,
see 1.3.4 Gather data for OdgModule page
by page page 24. The graphic connections are
not the same as the real FBcl connections:

● The graphic connections are oriented
general to one graphic page. But the graphic of
one module can use more as one page.
Connections over pages are done by

● Xref Cross references

● Using free variables

● Use the same FBlock instance (or Type)
more as one time with another Graphic
GBlock.

It means, after gathering the graphic, on
finishing reading one module, the graphic
connections should be translated to FBcl
connections in the module without the graphic
page orientation.

That is done for all graphic pins

● (readOdg.OdgGPin) in all graphic

● readOdg.OdgGBlock of the current

● readOdg.OdgModule.

For that the operation OdgModule#createFBcl
ConnectionsFromGraphic(...) (www) is called.
This gets GBlocks from:

● OdgModule#idxModuleIfc (www): All
module pins

● OdgModule#idxGBlock (www): All GBlocks
of the module

● OdgModule#idxGExprByName (www): All
expression pins

● OdgModule#idxGAccessByName (www):
All Access FBlock pins

From the graphic connection first a textual
connection is searched. That is the
denomination of @fb@pin...=: in the pin

description. The named FBlock_FBcl and its
pin is searched and connected.

Furthermore, all outgoing connections are
tracked. This is not bound to output pins, all
pins are evaluated. Because an outgoing
connection can also start from an input pin,
which is connected to any output.

For tracking output the operation OdgModule #
processFBlockPinGraphicConnection(…)
(www) is called. It calls after a short
preparation (create necessary pins which are
only given in the type) the operation
OdgModule#connectViaDemuxXref(...) (www).
This operaton is recursively called inside if the
connection has more paths.

For the graphic connection it should be
regarded:

● Using Xref: Then the graphic connection
goes to any Xref GBlock. There are more
as one Xref GBlocks with the same Label,
especially on several pages. All this
GBlocks with the same label references to
only one readOdg.OdgXrefGraphic which
is derived from readOdg.OdgGBllock. It
means any Xref graphic appereance does
not have its own OdgGBlock, it has a
common one valid for the whole
OdgModule. It is referenced sorted by
name in the container
odgReader.OdgModule#idxXrefGrpahicBy
Name (www). But for the connection this is
not important. Important is the fact. That all
incomming connections (usual one, onle
one source) is contained in the
OdgGBlock#fbPinDst, and all outgoing
connections are staring from
OdgGBlock#fbPinSrc. With that, a
connection via Xref can simple tracked by
regarding all outgoing connections if the
incoming connection hits the Xref.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxXrefGrpahicByName
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxXrefGrpahicByName
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxXrefGrpahicByName
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#connectViaDemuxXref-org.vishia.fbcl.readOdg.OdgGPin-org.vishia.fbcl.readOdg.OdgGPin-java.lang.String-int-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#connectViaDemuxXref-org.vishia.fbcl.readOdg.OdgGPin-org.vishia.fbcl.readOdg.OdgGPin-java.lang.String-int-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#processFBlockPinGraphicConnection-org.vishia.fbcl.readOdg.OdgGPin-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#processFBlockPinGraphicConnection-org.vishia.fbcl.readOdg.OdgGPin-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#processFBlockPinGraphicConnection-org.vishia.fbcl.readOdg.OdgGPin-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxGAccessByName
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxGAccessByName
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxGExprByName
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxGExprByName
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxGBlock
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxGBlock
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxModuleIfc
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#idxModuleIfc
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#createFBclConnectionsFromGraphic--
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#createFBclConnectionsFromGraphic--
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#createFBclConnectionsFromGraphic--

1.3 Read data from LibreOffice odg files 29

● Using Demux FBlocks. They have the
graphic style OfbDemux, respectively the
pins have ofpDemux.

The Demux FBlocks are a little bit more
complicated, hence explained following:

● If a graphic connection from any source
pin ends on a odpDemux pin, then this
Demux pin contains a selection String,
named in the software as pinDemuxSel.
Writing with or without […] does not play a
role, the string inside the [...] is used or

the given string without leading and trailing
spaces. Then the connection is continued
with the mulitplex pin, which is in
OdgGBlock#fbPinSrc of this Demux
Gblock. But the selection String named
pinDemuxSel in the Java source is
transported as argument of
OdgModule#connectViaDemuxXref(...)
(www)

*\t

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#connectViaDemuxXref-org.vishia.fbcl.readOdg.OdgGPin-org.vishia.fbcl.readOdg.OdgGPin-java.lang.String-int-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#connectViaDemuxXref-org.vishia.fbcl.readOdg.OdgGPin-org.vishia.fbcl.readOdg.OdgGPin-java.lang.String-int-

30 1 Inner Functionality of the Converter Software

1.3.7 Preparation of Expressions from odg

See also the data description of FBexpr in
chapter 1.1.5 FBexpr_FBcl: FBlock for
expressions, presentation in FBlock_FBcl
page 12

The internal Handling of expressions needs a
little bit explanation. Refer to chapter html /
Handling-OFB_VishiaDiagrams.pdf: 1.7
Expressions inside the data flow page to see
the capabilities of expressions.

1.3.7.1 createExprPins(...) createExprPins(…)

In createExprPin(…) (www?) all pins from a
OdgFBlockGraphicInstance are evaluated. This
are the drawn pins in the graphic, type is
OdgPinInstance (www?). The kind of the pin
due to the graphic style is stored in …

First the kind of all pins is checked, to check
which FBtype_FBcl of the FBexpr should be
taken. The kind depends

• how...

An internal String array sExpr[3] accumulates
the information about the operators of all pins.
It is created empty first. The content contains
elements, separated by comma , which are
stored in this form as constant value for the
expr input of the FBexpr seen in the FBcl file
(IEC61499).

• The sExpr[0] holds the operators of the Din
pins.

• Whereby the first element contains in two
characters the access type of the FBexpr
and the basic operation. The access type is ~
& = for an inline expression (without data
output), as an inline expression but with one
or some outputs beside (possible only if an
textual given operation is given) and an
expression which as a variable on its output,
hence called as statement to set it. This last
variant can also have some outputs beside
(more outputs, all have variables
associated). The same is for @ % $, in this
order, but with the property that the
expression has a THIS aggregation to its
FBlock, it is a FBoper, see html / Handling-

OFB_VishiaDiagrams.pdf: 1.7.9 FBoper,
operation for a FBlock page 47

• The basic operation on sExpr[0].charAt(1) is
+ * & v ^ = h for the operation types ADD,
MULT, AND, OR, XOR, CMP and SHIFT. For
all Din pins the operator should be given.
The graphic may omit the operator if it is the
default operator for the operation. But here it
needs to be specified anyway.

• Also an unary operator is written here, at end
of the element. Unary operator are only - ~ /,
last for reciprocal.

• The sExpr[1] holds the operator for the
operators of the K pin. The first element is
empty, the sExpr[1] starts with ",...". Not
existing K pins are presented with an empty
element. It means sExpr[1]=",,*" if only the
K2 exists. The K1 position is empty. The K
operator should be given anyway, also it is
omitted in graphic for the default, often /.

xxxx

Figure 11: odg/ExprExmp2Vars.png

For this image the sExpr[0] contains "=*,*,/"
because first char = means, it is an assignment
to a variable. The next * determines it as a
MULT expression. Then the input operators
follow with ,*,/" for * and /. The sExpr[1]
contains ",/," because the K1 is used with
division, and the K2 is not existing.

../pdf/Handling-OFB_VishiaDiagrams.pdf
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr-FBoper
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr

1.3 Read data from LibreOffice odg files 31

For all pins createExprPinAndKpin is called. This
completes the sExpr[] succesive for each pin.

At least, if all pins are created, the String for
sExpr[0] is adjusted. All din pins should have its
correct operator, But in the graphic the default
operator can be omitted. It means it should be
completed. Note that on code generation, the
operator on the first pin may be remove again
in an expression, for example +a +b is
translated to (a+b). This is done in code
generation. Here the operators are completed.
For all CMP operation = is written as default,
not ==, for the Din pin which is compared to. =
is the default operator for the input to compare.
Note that in opposite, in IEC61499 as also in
IEC61131 the compare operator for 'equal' is =,
and not == as in C/++, Java and other
programming languages. Whereas for an

assignment := is used instead = in current
familiar languages. That was the writing style
also in the first structured language Algol, as
also in Pascal, which were present in the time
of foundation of the IEC61131 automation
programming language (1980th. In opposite,
the founder for the C language have introduced
the shorter = for the assignment, but then used
== for the equal operator. This contradiction still
reaches us here today.

createDoutExpr(…) handles all pins with style
ofpDout, ofpVout, ofpZout, ofpExprOut. The
first name of one of these pins but not a
ofpExprOut determines the name of the FBexpr
instance.

The syntax of an ofpExpPart ist evaluated in
OdgModule#checkPrepareExprOperator(...)
(www)

1.3.7.2 createExprPinAndKpin

In createExprPinAndKpin(…) for one gpin
OdgGpin (www?) the appropriate . This are the
drawn pins in the graphic, type is
OdgPinInstance (www?). The kind of the pin
due to the graphic style is stored in …

Tip for debug: first lines there, the complete
text from graphic can be tested, to set a
debug.stop

(emptyline)

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#checkPrepareExprOperator-java.lang.String-boolean-org.vishia.fbcl.fblock.FBexpr_FBcl-
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/OdgModule.html#checkPrepareExprOperator-java.lang.String-boolean-org.vishia.fbcl.fblock.FBexpr_FBcl-

32 1 Inner Functionality of the Converter Software

1.4 Read data from Simulink

1.4 Read data from Simulink 33

TODO

34 1 Inner Functionality of the Converter Software

1.5 Read data from IEC61499 text files (fbd)

1.5 Read data from IEC61499 text files (fbd)35

TODO

36 1 Inner Functionality of the Converter Software

1.6 Complete Preparation of the module

Table of Contents
1.6 Complete Preparation of the module... .36

1.6.1 Forward and backward propagation of data types.. .37
1.6.1.1 Forward/backward propagation of dedicated pins... .37
1.6.1.2 Forward and backward propagation of non dedicated pins................................... .37
1.6.1.3 Forward declaration for depending pins of a FBtype... .38

1.6.2 Identification of the event flow due to data flow.. .40
1.6.2.1 UFBgl: Binding event to data on in/outputs... .40
1.6.2.2 Resulting evout because of evin of a FBlock... .40
1.6.2.3 Some Contemplation to bind data to events, event cluster....................................40
1.6.2.4 Info in pins for data to event processing.. .41

1.6.3 OFB: Build the event chain... .44
1.6.3.1 Start on module‛s evin... .44
1.6.3.2 propagate one step forward... .44
1.6.3.3 Check all other dinDst, build listEvoutSrc.. .44
1.6.3.4 Discard the step if not all doutSrcOther are driven by events yet.......................... .46
1.6.3.5 Connect the events if all dinDstOther are driven by events using listEvoutSrc......46
1.6.3.6 Put evoutDst in the queue to continue... .47

1.6.4 Completion of condition events... .49

1.6 Complete Preparation of the module 37

1.6.1 Forward and backward propagation of data types

This is a topic of the data flow. The forward
declaration is done by the operation

fbcl.fblockwr.Write_Module_FBwr#
propgDtypes(log) (www)

1.6.1.1 Forward/backward propagation of dedicated pins

The data type propagation starts by adding all
dout pins of all FBlocks and dedicated pins of
the module‛s inputs which are formally an
Dout_FBcl (to the inner of the module) which
have a dedicated fbcl/fblock/DType_FBcl
(www) to an internal List<Dout_FBcl> listDout.

From this pins the connection is traced to
connection Din_FBcl pins to following FBlocks,
which then have the same data type. This is
set, or checked. Conflicting data types are
reported.

Then, in the reached FBlock_FBcl, depending
pins which are yet not full dedicated are set,
see next sub chapter. The dout pins, which are
yet dedicated, are added to the List<Dout_FBcl>
listDout to use on further forward propagation

Also from begin, a HashMap<Din_Fbcl, Din_FBcl>
idxDinBackward is filled with all outputs of the
module which are Din_FBcl din pins, which are
dedicated. This HashMap is filled also with all
found din pins of all FBlocks which are now
propagated, because of backward propagation
if necessary. This HashMap idxDinBackward is
also used to check whether a pin reached on
forward propagation is already propagated,
hence by another forward propagation and the
related propagation inside the FBlock. If it is so,

only the data type is tested whether it is
matching. The propagation stops here.

After all forward propagation are done, all
remaining Din_FBcl din pins in the HashMap<>
idxDinBackward are handled for a backward
propagation. This din are either full dedicated
from beginning, or they are dedicated now
because of the forward propagation, and are
not reached by the forward propagation
(because if they are reached, they are removed
from the HashMap<> idxDinBackward. It mains that
are the remaining necessary backward
propagation candidats.

The following (non animated) graphic should
show this process. Note that the order is the
order of the colors magenta, red, orange,
green, cyan and blue. blue is the last backward
propagation.

TODO image.

As result of this forward and backward
propagation the most of pins in FBocks in the
module, especially in expressions, are set to its
fix data types whenever it is possible. If
different fix data types are clashing in
connections or depending pins, this is report as
an error of propagation. It should be fixed in the
module.

1.6.1.2 Forward and backward propagation of non dedicated pins

If pins remains which are not full dedicated in
its data type, then the module itself is not full
qualified. Code generation from only the
module alone is not possible. The module can
be used inside another module, and then this
superior module should determine the data
types of all to generate code.

But to can do so, the same instances of non full
qualified DType_FBcl is necessary on the inputs

or outputs of a module (favored: inputs) which
are also used in the inner of the module, or just
depending DType_FBcl are necessary to build as
described in the following chapter for this
module.

To do so, the same algorithm of propagation is
done with the non full qualified module input
and module output pins. As result, concise but

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_Module_FBwr.html#propgDtypes-org.vishia.msgDispatch.LogMessage-
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_Module_FBwr.html#propgDtypes-org.vishia.msgDispatch.LogMessage-
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_Module_FBwr.html#propgDtypes-org.vishia.msgDispatch.LogMessage-

38 1 Inner Functionality of the Converter Software

not full qualified DType_FBcl instances are built with its Depenency

1.6.1.3 Forward declaration for depending pins of a FBtype

If pins are not full qualified then the data type of
some pins depends from another. If the data
type of one pin is dedicated, also all or some
other pins are then dedicated with the same
data type. A simple expression can only have
the same dedicated data type on all its pins
expression relevant pins (except expr and THIS,
see TODO chapter missing FBexpr
presentation in Fbcl / IEC61499.

But specific mathematics expressions have
depending dedications. Simple, look on the
expression which combines real and imagine
part to a complex value. It is drawn on top in
the following image:

Figure 12:
OFB/ExprReIm2Cplx_DTypeDep.png

Below there are some internal information
about data associations as class diagram.

● The yellow part shows the presentation of
the expression instance itself. The expression

is presented in the data model in Java by a
fbcl/fblock/FBexpr_FBcl (www) which is
inherited fro FBlock_FBcl, here shown. The
FBlock_FBcl refers the pins, shown as used
types fbcl/fblock/PinExprPart_FBcl (www), and
Dout_Fbcl, but derived from Pin_FBcl, which
contains the aggregation pint to the
PinType_Fbcl.

● This aggregations go to the green part,
which is the FBtype situation. The FBtype_FBcl
is the instance with the name
“ExprReIm2Cplx_UFB”. It has independent from
the particular usage the data pins
fbcl/fblock/DinType_FBcl (www) and
fbcl/fblock/DoutType_FBcl (www). Not shown
here: Both are derived from DinoutType_FBcl,
and then from PinType_FBcl. with its pins, which
are here one Dout_FBcl (a variable in generated
code) and the both Din_FBcl as inputs, derived
to DinExpr_Fbcl.

● The aggregation dType shown in the
graphic is contained in the inherited class
DinoutType_FBcl. But for this type pins it is null,
not set. Because the data type is not
dedicated.

● Instead, the possible non dedicated data
type(s) is/are referenced from the FBtype_FBcl
in the array aggregation dTypes. That are the
red aggregations. The both DinoutType_Fbcl
objects contain the index in this aggregation
array, and hence the aggregation via index
ixDtype between the data pins and the data
types of this pins.

● On creation of the ExprReIm2Clpx_UFB
instance first the corresponding dTypes
aggregation array in fbcl/fblock/FBlock_FBcl
(www) remains empty, not determined in the
FBlock itself, if a data type is not notated on
this pins, as usual.

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DoutType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinExprPart_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinExprPart_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html

1.6 Complete Preparation of the module 39

● But on data type propagation this
instances are set from the real used data
types. Then they are full dedicated for this
using instance of the expression.

● The indices in Fblock_FBcl#dTypes are
determined by the indices
DinoutType_FBcl.html#ixDtype , as also the
Dtype_Fbcl instances there determines the
kind of dependency between the both types.
One is real, determined by ‘N‛, the other is
complex, determined by ‘n‛, but both are
depending. It means if one of the input is given

as real type float, typeChar ‘F‛, then the output
is dedicated by the correspond complex float
type with typeChar = ‘f‛.

● And hence the input determines the output
type, also if it is not the same, only depending,
and the data type propagation can be
forwarded from the outputs of the expression to
the next FBlocks.

● The usingPins aggregation in Dtype_FBcl
helps to find out the appropriate pins

../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html#ixDtype

40 1 Inner Functionality of the Converter Software

1.6.2 Identification of the event flow due to data flow

In IEC61499 diagrams and language the event
flow is an integral part of the model, planned
by the architect of the solution. The data flow
should match to the given event flow. Some
special options are possible: Using data before
they are newly calculated. It means that is a
possibility, but also also a prone of error if
mistakes are done .

In opposite, ordinary Function Block Diagrams
uses only the data flow to calculate the

processing order paired with dedicated sample
time designation.

For the UFBgl diagrams, the internal
processing uses the event flow as in
IEC61499, but it is not necessary to dedicate it
in all details from the graphic model. It is
automatically generated due to the data flow.

1.6.2.1 UFBgl: Binding event to data on in/outputs

Other than for reading for example Simulink
diagrams, the UFBgl need a dedicated
association between data in- and outputs and
the associated event pins. With the given event

pins the data are related to the events, instead
to “sample times”.

TODO adequate image as for simulink

1.6.2.2 Resulting evout because of evin of a FBlock

This is the question of track the event chain(s).

In chapter Error: Reference source not
found Error: Reference source not found
page Simple and Basic FBlocks are mentioned.
Simple FBlocks have only one event input
(evin) and one event output (evout) following
the evin. Basic FBlocks can have more events.
The special case of basic FBlocks with a
simple regular state machine results in a non
state-depending correlation between input and
output events. This is regarded in building and
executing the event chain. Such FBlocks are

similar as classes (instances) of a class with
more operations. The evin forces execution the
operation, and on success the evout given with
resulting data ready to get. But it is also similar
to FBlocks in other Function Block Diagrams
(such as Simulink) for each one sample time
per event.

If a FBlock with a state machine is inside the
module, it may build independent event outputs
which builds an own event chain, as mentioned
in the introduction to the chapter above.

1.6.2.3 Some Contemplation to bind data to events, event cluster

In Simulink events for that usage are unknown.
Instead each data input should have a
dedicated sample (step-) time association. The
step time replaces the event association, if all
functionality (all data pins of one step time)
should be associated to one event flow. But
this is also for optimization of code generation
often not a good decision. It is better to have a
fine division in primary independent function
groups:

For UFBgl and IEC61499 you can have this
fine division by manually planning of data and
event associations, whereby you have more
events as step times. Lets look on an example:

1.6 Complete Preparation of the module 41

Figure 13: smlk/Testcg_MdlTstepSmlk.png

All data have the same sample time here. But
maybe it is not necessary to calculate the
outputs of y2. Then it is better to have two
event chains, one for y1 and a second for y2. A
third event chain is given, because the q
variable is a “unit delay”, a stored value from
the sample time before calculated with the third
event.

The associations of the din and dout with same
sample times to different events is done with
first back tracking from the data, detection
which input data are necessary for one or a

group of output data. Doing that also branches
are detected: Some data should be calculated
before, as common data for then independent
branches. For that look to a more sophisticated
example:

Figure 14:
smlk/ParallelSimple_smlk_EvChainBack.png

Both yellow blocks a1) and a2) are
independent and hence controlled by different
event chains with own event inputs for the
module. But to execute this blocks, it is
necessary to calculate block e) before. This is
the first event to call.

TODO more simple smlk model

TODO Test with UFBgl, manual drawn evin and
also a manual EvJoin FBlock.

1.6.2.4 Info in pins for data to event processing

The Type fblock.Evout_FBcl (www) contains
two elements which are set temporary while
built the event chain:

● Evinout_FBcl#idxRepresentingEvents: This is
a HashMap of <Evout_Fbcl> which contains all
events, which drives this event. This is
essential to detect the situation which is shown
in in the following chapter 1.6.3 OFB: Build
the event chain to prevent to much effort for
unnecessary JOIN of events.

The fblock.Pin_FBcl (www) contains

● Pin_FBcl#mEvMdlChain: Here the bit for the
driving evinMdl (possible more as one) are set,
also on Din, Dout, Evin, Evout pins. This is
used to prevent twice handling for the event
chain built.

The fblock.Evinout_FBcl (www) contains some
elements which are set temporary while built
the event chain:

● Evinout_FBcl#mEvinClusterEnd: One bit for
each evin in the module‛s inner evoutMdl array
and in the array of inner evin for state
machines, corresponding to the
PinType_Fbcl#ixPin. Any event pin of FBlocks is
marked to designate the association to an
event cluster per end event. This is used for
backward event to data flow algorithm
(currently in version 2024-03 not used, but it
was used in 2019, todo: do not remove the
idea).

● Evinout_FBcl#mEvoutClusterStart: One bit for
each evout in the module‛s inner evinMdl array
and in the array of inner evout for state
machines, corresponding to the
PinType_Fbcl#ixPin. Any event pin of FBlocks is

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evinout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evinout_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evinout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html

42 1 Inner Functionality of the Converter Software

marked to designate the association to an
event cluster per start event. This is used for
forward event to data flow algorithm.

This bits are the same as
Pin_FBcl#mEvMdlChain: (?) todo remove one

● Evinout_FBcl#idEvent: This is a unique
identification for each event for all modules

while translating. It is used as key in
fbcl/readSource/Dataflow2Eventchain_FBrd.ht
ml#mapEvPrepUpdIn Queue (www) which
contains the unique instance of the triple of
three representative events to process, see
todo

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#mapEvPrepUpdInQueue
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#mapEvPrepUpdInQueue
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#mapEvPrepUpdInQueue

1.6 Complete Preparation of the module 43

(empty page)

44 1 Inner Functionality of the Converter Software

1.6.3 OFB: Build the event chain

One event chain is the order of calculation
starting with a dedicated, often module input
event. Or adequate, if the event processing is
organized with event queues on each or a
group of FBlocks, it is the resulting order of
execution the events for any FBlock. If the data
flow is split with a variable of style ofpVout...
(which results in an instance variable) then the
event chain is also split into more than one
event chains. More event chains are joined
together with the specific Join_UFB FBtype if
more as one event chain is necessary for data
inpu ts.

it is Presumed that all input and output data of
the module are assigned to events. The event
connections in the module are not necessary
and are just automatically propagated. But it is
also possible to have some manual made
event connections and also Join_UFBFBlocks
for a more sophisticated event flow, or if the
event flow should be explicitly presented in the
graphic. The fine wiring of events can then be
carried out automatically on the basis of the
data flow.

1.6.3.1 Start on module‛s evin

This is organized by the operation
Dataflow2Eventchain_FBrd#connectEventsFor
ward() (www).

This operation puts firstly all input events of
the module in a container (LinkedList
<EvPrepUpdInQueue> queueEvout) to process it
one after another. Whereby the update input
events (see Error: Reference source not
found Error: Reference source not
foundError: Reference source not found
Error: Reference source not found) are
combined with their prepare events due it is
given in a UFBgl module input block (style
ofbMdlPins). Both pins, prepare and update, are
associated in a class EvPrepUpdInQueue
(www). This queueEvout is the filled by

furthermore by more detected events in the
chain. If the list is empty, all is done.

An adequate list LinkedList <EvPrepUpdInQueue>
queueEvUpd) remains yet empty, it is filled on
found update events for the update event chain
.

The doutSrc pins of the module are marked
with doutSrc. bEvDataPropg = true because
they are driven by default by the module‛s
event.

1.6.3.2 propagate one step forward

The operation propgEvent(evoutSrc, …) does
the work for one event from the queueEvout.
Each evoutSrc pin (first the evin of the module,
it is a Evout_Fbcl) is tracked by tracking the
associated doutSrcpins (firstly the module din
pins, it is Dout_Fbcl) forward. This is a two-
stage loop because there may be more as one
doutSrc pins associated to one evoutSrc, and
there may be more connections for each
doutSrc to the dinDst.

It is asserted that doutSrc.bEvDataPropg == true
because elsewhere the event should not be
propagated. But the connected dinDst is tested
if(!dinDst.bEvDataPropg) {.... If an dinDst is
already marked, then it was already tracked
and should not be handled again. On start it is
not marked.

The log writes

- ^step: xa==>y0.X2
for tracking the evoutSrc step with the doutSrcxa
and the dinDst y0.x2. For this input the
associated evinDst input(s) of the FBlock are
picked. More as one is possible but usual only
one evinDst is existing.

1.6.3.3 Check all other dinDst, build
listEvoutSrc

With the information about one data connection
with the associated event the operation
checkDinOtherAndConnectEv(...) (www) is

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#checkDinOtherAndConnectEv-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-java.util.List-boolean-int-
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#checkDinOtherAndConnectEv-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-java.util.List-boolean-int-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.EvPrepUpdInQueue.html
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.EvPrepUpdInQueue.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventsForward--
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventsForward--
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventsForward--

1.6 Complete Preparation of the module 45

called. This operation checks also all other din
pins which are associated to this evinDst,
because, the quest is not the data connection,
it is the event connection. With that it is
detected which evoutSrc are altogether
necessary driving the evinDst. Often this is only
the one given evoutSrc tracked with the doutSrc,
but it is possible that other pins are driven by
doutSrc with other events associated. With
these all other evoutSrc respectively the whole
information about its event chain the list
listEvoutSrc is filled and offered to the
connectEvent…(…) operation, see next chapter.

This operation checkDinOtherAndCon…(…) works
in the following kind: While testing all
dinDstOther to appropriate doutSrcOther the
following cases are possible, the output to the
log is shown in console font in ” ":

● constant: “#fb.din” The dinDstOther is
driven by a constant value, no event
necessary, it is ok.

● Not connected, constant: “#0=>fb.dindst”.
A not connected pin is set to the constant value
“0”. It is ok. The code generation should deal
correctly with it.

● If connected, all doutSrcOther are checked:

● doutSrcOther.sConstant(): “#const:
fbsrc.dout=>fb.pindst” The dout pin is marked
as delivering only a constant, then it can be
ignored as contribution for the event chain. The
constant value is evaluated either with the init
event or (better) with a constant calculation
before or with ctor.

● zout: and not bCheckEvUpdoutMdl: “Zout:
fbsrc.dout=>fb.pindst” The driving output is a
state variable, style ofpZout… in the graphical
model. The output value can be taken without
an event. It is ok. But for tracking the update
event chain, this output is handled as an event
relevant input, see next.

● All other checks needs the
Write_FBlock_FBwr fbwSrcPrev to evaluate all
pins.

● zout: and bCheckEvUpdoutMdl: The update
event bits should be added (TODO)

● doutSrcOther.isEventChainDriven(evStart):
The doutSrcOther is already driven by the same
event from this chain. Then the associated
evoutSrc are necessary to connect as
immediately event in the chain, hence first
added to the listEvoutSrc. But it is tested
whether the event is already connected. This
occurs on manually (graphic) connection. Then
nothing is added.

TODO text more clear

bEvDataPropg: “^fb.evSrc:doutSrc+=>dinDst”:
The dinDst is driven by an doutSrc which is
already driven by an event in a propagated
chain. This evSrc is taken as one input for the
evinDst firstly stored in a listEvoutSrc. This list
is temporary built for the dinDst of the checked
FBlock inside the
checkDinOtherAndConnectEv(...) operation.

The storing of evoutSrc is done by calling
addEvoutSrc(evoutSrc, list..). This operation
checks the evoutSrc whether it is already stored
in the list, but also whether another
evoutSrcGiven is stored in the list with its
relation to the evoutSrc. If the evoutSrcGiven is
driven by the new coming evoutSrc, then the
evoutSrc does not need to be stored, because
the doutSrc comes from an FBlock which is
before in the event chain. It can be used
without regarding its evoutSrc, because this
event forces the evoutSrcGiven. But vice versa if
the evoutSrcGiven drives the new coming
evoutSrc, then this evoutSrcGiven is no more
necessary. It is replaced by the evoutSrc. The
evoutSrcGiven is then removed from the list and
the evoutSrc is added instead, also responsible
for the newly regarded dinSrc.

● If the doutSrcOther comes from an FBexpr
and the other conditions were not met, then the
inputs of the expression maybe more in the
queue can also be constant, driven by Zout etc.
There inputs should be evaluated in the same
kind. Hence this operation

46 1 Inner Functionality of the Converter Software

checkDinOtherAndConnectEv(...) is called
recursively to check it. The return value true
indicates, all is found. On false, TODO

1.6.3.4 Discard the step if not all
doutSrcOther are driven by events yet

The result of this check is the true/false
decision whether the found event sources of all
inputs in the list listEvoutSrc can be connected
to the evinDst of the checked FBlock. It not all
dinDstOther are driven, because its
doutSrcOther are not yet all registered in an
always built event connection, the listEvoutSrc
will be discarded. The same check will be
repeated later, but then with more registered
doutDstOther in event chains.

1.6.3.5 Connect the events if all
dinDstOther are driven by events using
listEvoutSrc

In the positive case the event connection can
be done.

The operation
Dataflow2Eventchain_FBrd#connectEventMay
beJoin(...) (www) does the work. It gets the
listEvoutSrc from chapter Error: Reference
source not found Error: Reference source
not found and the evinDst to connect.

For that some situations are possible:

● only one: If the listEvoutSrc contains only
one evoutSrc, and the evinDst has not a given
connection, then it is very simple, both should
be connected.

For example if you have the following
situation:

<:@image:./img/odg/
ExpressionExmpCombiBoolean.png ::
title=ExpressionExmpCombiBoolean. ::
size=6.3cm*1.66cm :: px=408*108 ::DPI = 164.
>

then the right boolean expression (v) is driven
intrinsic by two events, the evoutSrc of the left

boolean expression (&) and the input step
event. But the input step event is contained
already in the evoutSrc driven from the left
expression (&), hence not in the listEvoutSrc .

● OR: If the listEvoutSrc contains more
events, the evinDst has not a given connection,
then it is already clarified in checkDinOther…(…)
that all events comes from different event
chains. But if all the data inputs are provided by
all this events, means any event provides all
data, then the events are simple wired all to the
evinDst, it is a OR relation. Any event in the
listEvoutSrc can drive the evinDst
independenlty.

● JOIN: If If the listEvoutSrc contains more
events, and the data comes from different
event chains which presents usual a parallel
structure, then both event chains should be
reached the point where the data are ready.

Figure 15: EventParallelJoin.png

This situation is shown in the image above. y1
and y2 are the necessary data, which are
calculated parallel in the graphic, parallel if the
program is executed with parallelization (using
multi core technology or such) or just
calculated one after another. If both are ready,
then the event for y3 should come. This is done
by the JOIN_UFB FBlock which is inserted
automatically. The listEvoutSrc contains the
event from y1 and y2.

● init and ctor handling: If a data flow is
used both for any other event and for init and /
or for ctor, then the init driven event chain is
only connected to the init event as evinDst,
same as for ctor. And an init or ctor driven
event is not connected to another evinDst, if the
FBlock has a ctor respectively an init event.

It asserts that the construction does only call
the ctor operation, if it is existing. And also init
calls only init. Look on the small examples:

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventMaybeJoin-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventMaybeJoin-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventMaybeJoin-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-

1.6 Complete Preparation of the module 47

Figure 16: any image

In this simple case the data fq are provided
with init and also with param. But the
connected FBlock uses the data input fq only
with any other event, here setFq. The FBlock
has an init event, but just not related to fq.
That‛s why this data connection forces only
connect param→setFq and not init→setFq. If
the same FBlock would not have an init event,
then init→setFq will be connected, as specific
handling of any FBlock with no init routine in
the initialization phase.

Either the listEvoutSrc contains only one
event, that one which was originally tracked.
Then this only one event is connected. It is the
simple case.

If more as one evoutSrc is in the list, then the
following decision is necessary:

...Then a Join_UFB FBlock is necessary to firstly
join this more evoutSrc, and the output of the
Join FBlock is connected then with the evinDst.

● If these events come all from the same
source for all dinDstOther, then both events
drives the data. The events are
independent. Both are connected to the
evinDst. It is an OR connection of events.

● If the events are independent, one drives a
part of doutSrcOther, another drives other
data sources, an AND connection os
necessary for the events. In other words,
all these events are necessary to deliver
the data (dinDstOther) for the given
functionality, the evinDst. The AND of the
events are organized by an JOIN_UFB
FBlock which is inserted in the event flow.
The function of that JOIN_UFBgl is similar
with the E_REND FBlock in IEC61499
(REND = rendezvous of the events), but
the JOIN_UFB have a variable number of
inputs.

● The last of this cases is, if an event
connection is also existing (from the
graphic) independent from this data driven
event connection. Then it means the event
connection determined from graphic is
necessary because of the intention of the
graphic (not questinoned), and the other
event(s) are necessary because of
delivering data. It means also a
JOIN_UFB FBlock is necessary to fulfill
this situaltion.

1.6.3.6 Put evoutDst in the queue to
continue

Last not least the event outputs from the
FBlock associated to the evinDst are
determined. If the FBlock is simple, this is
exact one event. It is possible to have more
events. This is for Composite FBlocks in
IEC61499 terms or also for Simple FBlocks
with only one operation. It is also valid for
Standard FBlocks with a simple reguar state
machine, see chapter Error: Reference
source not found Error: Reference source
not found. This output evoutDst are put in the
queueEvout to find more data driven event
connections.

If a FBlock has a more complex state machine
(ECC = Execution Control Chart), then its
output events are driven due to the execution
of its ECC, hence builds new event chains
which are connected from there. This evout are
put in the queueEvout from beginning to build
the independent event chain. The quest
whether and when an event is created is not
related with this event chain algorithm.

Note: For code generation it builds callback
operations from the ECC execution.

xxxxxxxxxxx rest weg

It is important that a FBlock‛s event input
evinDst can be added to the event chain if all
doutSrcOther are provided with data from
currently end points of clarified event chains.

48 1 Inner Functionality of the Converter Software

One of this end point evout is anyway the event
which has determined the data source. Usual
only this only one evout may be necessary,
then it is simple.

If more as one event chain delivers the data
necessary for the event inputs

It means either the other event associated din
of the FBlock are provided with const values, or
values from other events (from a ofpZout… dout
pin), similar as a “rate transition” or “unit delay”
in Simulink, or just they are already reached by
the own event chain marked with the number of
the event pin.

If the din is provided with a dout which is
associated to another event chain and which is
not a state value (ofpZout…), this is an error in
the graphical model and shown as that. A mix
of data from different event chain without

dedicated designation as state value is a prone
of error in functionality. That‛s why it is rejected.
The algorithm itself may be ignore that fact.

If any din is just not provided with an already
event driven dout, then it is assumed that this
FBlock should be inserted in thís event chain
before, should be calculate first. For that
checkDinOtherAndConnectEv(...) is called
recursively, but with this depending evin on the
depending FBlock. This is a necessary data
branch which may be also detected first in
another tracking flow, or it is never detected
first because it depends only on const or
ofpZout… pins. Then it is the only one possibility
to include it.

The event chain is then built from the starting
evout of the first recursion to this operation to
the evin of the last found proper FBlock in
recursions. Going back after recursions

../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#checkDinOtherAndConnectEv-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-java.util.List-boolean-int-

1.6 Complete Preparation of the module 49

1.6.4 Completion of condition events

Condition events are used for conditional
execution of FBlocks, see main chapter
“Handling of OFB” html / Handling-
OFB_VishiaDiagrams.pdf: 1.6.8 Conditional

execution with boolean FBexpr. The
completion is necessary for following FBlocks
which are not immediately in one chain of the
‛true’ or ‛false’ output.

../pdf/Handling-OFB_VishiaDiagrams.pdf
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-GBlock-ExprEv

50 1 Inner Functionality of the Converter Software

1.7 Code generation due the to event flow

As written in Error: Reference source not
found Error: Reference source not found
the event flow results vital from the data flow,
inclusively some manual given event
connections. The code generation can now use
the event flow.

For the following presented kind of code
generation it is presumed that all FBlocks are
arranged in the same memory area. Dispersed
FBlocks are specific designated, they break the
built event chains. It is also possible, but not
explained here, that the event flow combines
several hardware devices, with communication.

Each evin of a module results in one operation
of this module which contains the content of all
FBlocks in one event chain.

It is possible that also intermediate evin inside
a module are built. These builds also
operations, but these operations should be
called only internally due to the event sources.

Especially FBlocks with state machines (ECC
in IEC61499 words) are candidates for event
emitting. This is regarded later (TODO for
further versions).

Each doutMdl can have an access operation. It
is a getter (Object orientated). Either the gotten
value is immediately accessible, so the getter
can be removed by code optimization (only to
hide the access to a private output variable), or
this operation can execute an expression using
more as one states in the FBlock. If the FBlock
or this part of a FBlock has no states, it is
combinatorial, then the access operation to the
doutMdl can immediately access the inputs of
the module. Then the operation to the evinMdl
is not given and not necessary. But this feature
is in the moment (2014-03) also shift to a
further version.

Following the script for C-source generation is
shown and discussed:

1.7.1 Using a templates for code generation with OutTextPreparer

This is the general approach: All generated
codes are controlled by templates, see
./../../../../../Java/pdf/RWTrans/OutTextPreparer.
pdf
(https://vishia.org/Java/pdf/RWTrans/OutTextPr
eparer.pdf). Hence it is possible to adapt the
code generation due to also specific
approaches and styles.

The templates for code generation can be
controlled by the option -tplCode:path/to/
templatefile, whereby more as one file is
possible (use the option more as one). If this
path is not given, the internal templates for
standard C code generation are used. This
templates are stored in the jar file in the
internal path org/vishia/fbcl/writeFBcl/
cHeader.otx and .../cImp.otx. This files can be
adapted if the tool is adapted, but only in
consent with maintainer of the sources. The
recommended way for user experience is:

Copy this files to your own location and use the
-tplCode: option.

The template files should set a variable which
allows the association to determined file types.
For C/++ generation this is .c or just .cpp and
.h for the header files:

<Code:Otx.><:set:GenCode1=".h"> <.Code>

<:set:GenCode2=".c">

The name of this variable should be start with
GenCode following by a number starting with 1,
as shown. Then the generation scripts with
<otx::GenCode1: etc. are used to generate a file
with the name of the module (in the ofbTitle
style box in the graphic) and the here given
extension. It means you can also generate
some information files with any data
representation from the internal given data.

https://vishia.org/Java/pdf/RWTrans/OutTextPreparer.pdf
https://vishia.org/Java/pdf/RWTrans/OutTextPreparer.pdf
../../../../../Java/pdf/RWTrans/OutTextPreparer.pdf
../../../../../Java/pdf/RWTrans/OutTextPreparer.pdf

1.7 Code generation due the to event flow 51

The directory of the output files is the argument
-dirCode:path/to/dir. The file name is the
module name, which is written The extension,
added to the module name as full file name, is
that text, which is defined in the template with

<Code:Otx.><:set:GenCode2=”.c”> <.Code>

adequate to each GenCode… start script.

It means you can have more as one file code
generated with any content controled by the

template. You can for example also generate
reports from the data content, xml files or csv,
and more.

The main script for the whole file should get
internal data structure of a module as
argument, hence should start with

<Code:Otx.><:otx:GenCode2:mdl> <.Code>

<:type:mdl:org.vishia.fbcl.fblock.Module_FBcl>

as also shown in the following .

<:style:Code-Description:Label:????>Start of the script for C code generation in the code
generation template example

<Code:Otx.><:set:GenCode2=".c"> ## extension .c for the c-File <.Code>
<:otx:GenCode2:mdl>
<:type:mdl:org.vishia.fbcl.fblock.Module_FBcl><: >
/**Generated by org.vishia.fbcl.
made by Hartmut Schorrig, vishia.org script 2024-03-23*/
#include "<&mdl.name>.h"
<:for:header:mdl.iterImport()>#include <:<><&header.getValue()><:>><:n><.for>
<:for:evinMdl:mdl.fbp.evout> ##all input events of the module
<:type:evinMdl:org.vishia.fbcl.fblock.Evout_FBcl>
<:if:evinMdl.name.equals('init')>
.....
<:else>
/**Operation <&evinMdl.name>(...) ## for each input event generate an operation
 */
void <&evinMdl.name>_<&mdl.name> (<&mdl.name>_s* thiz<: > ## name_TypeName(TypeName* thiz
<:for:refMdl:evinMdl.iterPort()>
, <&refMdl.dType().dt().typeRef.name> const* <&refMdl.name><.for><: > ##argument list
<:for:dinMdl:evinMdl.iterDout()>
, <&dinMdl.dtypeCpp()> <&dinMdl.name><.for>
) {
<:exec:prcEvchainOperation(evinMdl, OUT)> ## whole body of the operation
} // <&evinMdl.name>_<&mdl.name><.if>
<\.for>
<\.otx>

This is the whole script for the .c-File, only the
init event is fade-out to increase overview. It is
similar.

The type of the argument mdl is tested in the
script in the second line. The test itself is an
assertion (necessary?) but more an asserted
documentation. You see here which class is
really used as container of the data. Look to
the Javadoc for
./../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Mo
dule_FBcl.html (https://www.vishia.org/fb

g/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Mod
ule_FBcl.html).

The <: > on end of the line after <:type:…
prevents output of a newline, the script text
continues with the next given text (<: > means,
skip all white spaces in the script).

With <&mld.name> the value of the field name (in
Java) is output in the mdl data.

Last not least this script iterates over all
mdl.fbp.evout , and prod

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html

52 1 Inner Functionality of the Converter Software

1.7.2 Tracking the event chain for a module‛s operation

1.7.2.1 What are module‛s operations, prcEvChainOperation(...)

The event chain for an operation starts either
on an Evout_FBcl of the module‛s event input,
or on an Evout_FBcl of a FBlock which
contains a state machine. The last one
operation is called after entry in the appropriate
state for the one-device code generation. The
first one operations are start from outside, if an
input event comes, respectively if this operation
is called from outside, either manually or from
code generation from the using ODB module.

The sensibility of an operation from an event
output of a state machine FBlock depends on

the implementation. It is only done if in the
generated code a callback for this event
operations is done, or if in the generated code
an event queue for such events is used. A
simple and often recommended kind if code
generation uses polling for bits set by output
events. This is described in chapter 1.7.4
Conditional events in the operation page 54

The operation which generates this operations
is .WriteCodegen#prcEvchainOperation(…)

http://tt/

1.7 Code generation due the to event flow 53

1.7.3 Access operation to dout, arguments

If a dout access operation uses values from din of the FBlock, this values should be delivered from
the back connected outputs. This is typical for expression FBlocks, but also for some other ones.

The DoutType_FBcl#mUsedInputs contains the bit mask for the din due to the dout. The inputs with
their types builds the arguments, the argument order is the order of the inputs in the type. If the
instantiation has more inputs due to one type din (multiple pins) then all inputs in order are used.

54 1 Inner Functionality of the Converter Software

1.7.4 Conditional events in the operation

There are two reasons for conditional events:

a) FBexpr which produces a boolean output
and which have a true or false event output
are specific FBexpr of FBtype ExprEv_OFB. This
both events comes after the input prep event, if
the boolean result of the expression is either
true or just false. This is the view to the event
flow.

b) FBlocks which an internal StateMachine
can either have a callback or a given event
queue for its internal events (see Error:
Reference source not found Error:
Reference source not found page Error:
Reference source not found). Or it can have
similar as a) bits for each events which are
outside polled to execute to proper statements.

For the code generation in one execution order
it means, with the boolean output of this
FBexpr an if(FBexprOut) { … } should be
produced: Or just also with the bits of a FBlock
output with StateMachine. The FBlocks in the
following chain are only executed if the boolean
FBexpr output is either true or false, or the bit
is 1. This is valid for all FBlocks in this chain.

But sometimes, this chain is more complex. It
means, not immediately the if(...){ can be
code generated. Instead the condition should
be first only immediately generated and stored
in a module local bit variable one bit per
conditional event, or just in an array of bit
variables. The condition itself is valid already
on emitting the event, and tested on
consuming. The output event and all
successive events are marked with the Bit
index of the appropriate event. Check the event
bit variable with the mask results in the
necessary if(evBits[1] & mEvxy){ as example
for an array of event bits. In the same kind also
an adequate bit mask inside a used FBlock is
tested whether the event is emitted:
if(fbxy.evBits & mEvxy_FBxyType){ . For code
generation the visible name is built from the
event‛s name. for events from internal a

FBlock, or just from the name of the
ExprEv_OFB..The code generation also
generates the bit mask of the events due to its
names as constant definition, or in C als
#define mEvxy 0x0002 (example).

bool nameExprEv_OFB = b1 & b2;
 // ...
further code
if(nameExprEv_OFB) {
 // ...
this is the conditional evant chain
}

Note that the ExprEv_OFB instance should be
named for example as “evCondxy”. Then the
code es readable.

Successive following FBlocks with the same
condition are all part of the same if branch.

A code as shown above is optimized by familiar
compilers: The bool condition variable is usual
held in a CPU-register or on a simple
accessible stack location because it is
immediately near it‛s usage is jmp condition.
Hence it produces the same optimal code as

if(b1 & b2) {
 // ...
this is the conditional evant chain

But this more complex writing style is
necessary because if some other events are
joined in the following chain, the condition
variables of all JOIN inputs should be
regarded:

if(evCond1 & evCond2) {
 // ...
this is the conditional evant chain
}

… check the evOutSrc for Join or for true, false
on code generation of

It means an event in the queueEvSrc inside the
WriteCodegen#prcEvchainOperation(…) are
optional marked with the ExprEv_OFB instance
of FBexpr, and Also the class
WriterCodegen.EvJoin contains a List of
FBexpr_FBcl references of these (0, one or
more as one) ExprEv_OFB for the condtion.

http://tt/
http://tt/
http://tt/

1.7 Code generation due the to event flow 55

1.7.5 Code generation for one FBlock, one line or statement in the chain

For one evin prcEvin(…) is then called. It checks the conditions of the FBlock in the order of the
following sub chapters.

1.7.5.1 Generation with a FBlock specific script

First with the typeName of the FBlock a proper
type specific otx script is searched. If it is
found, it is called with the arguments

● fb: The FBlock instance

● dout: null or the first dout of the fb, this
helps for some typical FBtype

● din: null or first input of the fb, same

● doutype: DoutType_Fbcl of the dout or null
if not given.

● evin: Evin_FBcl the evin of the FBlock
which is triggering

● evSrc: Evout_Fbcl the event before.

The following example shows the snippet to
generate a ofpZout… variable TODO because

of new Expr approach this example is nor
more proper setting on output of an
expression. Here in the script it is clarified that
this variable should only set with an update
event, in the update routine. This is a FBlock-
specific condition and hence tested only here.
The preparation event is indeed connected to
the FBlock that presents the variable, but it
should not be effective.

Such an FBlock is contained in the fbd file with
a line (example):

 xdabz : VarV_UFB;

In the otx script for example the comments can
be changed. The thiz-> is a part of the
translation script and can be replaced, etc.

<:style:Code-Description:Label:????>Example script for C code generation for a specific FBlock

##Set of the value(s) of a VarZ_UFB FBlock (output variable of an expression in an instanc ...
<:otx: VarV_UFB: evSrc, fb, evin, din, dout, doutype> ##dout is the expression output
 // <&evSrc.nameFBpin()> --> <&fb.name>.<&evin.name> otx: VarV_UFB (<&fb.typeName()>)<: >
<:if:din.isComplexDType()>
 thiz-><&fb.name()>.re = <&genExprTermDin(din,'.re', OUT, 0)>; // <&dout.nameFBpin()>
 thiz-><&fb.name()>.im = <&genExprTermDin(din,'.im', OUT, 0)>; // type is complex, otx:<: >
<:else>
 thiz-><&fb.name()> = <&genExprTermDin(din,'', OUT, 0)>; // <&dout.nameFBpin()><: >
<.if><: >
<.otx>

Exact this script is used to set an expression
output variable. The output variable itself is the
FBlock VarV_UFB and the expresssion which
determines it is immediately connected before.

Generally the FBexpr_FBcl which does not have
an output variable are skipped by the Error:
Reference source not found Error:
Reference source not found. This
expressions are evaluated by tracking
backward input values as described in Error:
Reference source not found Error:
Reference source not found.

TODO an proper FBType for complex
multiplication expression should be created in
the Java data and hence should have a proper
otx Script. Without that special handling: If a
variable is not scalar, especially complex as
here shown, or an array (TODO), the code
generation works component wise. It means it
does not automatically a cross product for
complex values, instead multiply the
components. But this is faulty, because a
complex multiplication makes also a cross
product as

 y.re = x1.re * x2.re - x1.im * x2.im;
 y.im = x1.im * x2.re + x1.re * x2.im;

56 1 Inner Functionality of the Converter Software

That‛s just an important TODO solve in the
next time. How to do: The type and operators
of the expression should be detected, and with
this string the proper otx script should be
gotten and used. Hint: The output of such an
expression for cross multiplication of complex
should anytime a variable. Elsewhere it is not
possible to generate code because it cannot be
back tracked through such complicated stuff if
more as one cross multiplications are in the
term. The intermediate results

1.7 Code generation due the to event flow 57

1.7.6 Expression to set elements in a
variable

The variable to set can be an array variable or
also a structured variable. It should be given
either immediately on the output of the
expression. Then it is a FBlock of Type
VarL_UFB

58 1 Inner Functionality of the Converter Software

1.7.7 Set the module output

The module output doutMdl in the graphic is a
Din_FBcl as part of the inner pins of the module
FBlock referenced via Module_FBcl#fbp. It
should be presented by a data element in any
target language. To support getter
(encapsulation of data) of course proper
operations can be generated, depending from
the given module outputs, maybe also
depending from their output event associations,
but that‛s another question, see chaper TODO

Now it is important to distinguish the data type
of the output and also the kind of the feeding
input. The output data type can be a reference,
a structure type, an array or a simple scalar
variable. Note, a reference is a Port_FBcl.

For feeding inputs three situations should be
considerate. The input can be a specific
FBexpr which sets the elements of a following
variable, which is here the module dout. The
input can be a variable with the same data type
and also sizeArray. Or the input can be any
expression generated inline, where for all
elements of the output the data are separated
built. To do all this variants, some otx scripts
exists. This scripts are called all in
fbcl/writeFBcl/
WriterCodegen#prcEvinFBlock(...) (www)
under condition if(evinDst.pint.kind.
isModulePin()). It is checked in this given order:

● otx: setMdlOutScalar: This otx script in
cImpl.otx is called, if the modules output is
scalar. This is the usual case. The script calls
via WriterCodegen#genDinAccess(...) (www) to

build the feeding input expression in the
standard way.

● otx: setVarArrayElem: This otx script is the
same as called on internal variables, if the
doutMdl is an array type and the connection
comes from one or more FBexpr of type
ExprSetArray_UFB. This expression(s) set(s) the
array elements of this module output variable.

● otx: setVarStruct: This otx script is the
same as called on internal variables, if the
doutMdl is a structured type and the
connection comes from one or more FBexpr of
type ExprSetStruct_UFB. This expression(s)
set(s) the components of this module output
variable.

● otx: setMdlOutArrayExpr: This otx script is
called if the doutMdl is an array type and the
input does not come from an ExprSetArray_UFB,
it comes from an ordinary expression. It is the
same script as for an array variable with this
condition.

● otx: setMdlOutArrayCpy: This otx script is
called if the doutMdl is an array, but the input is
not an expression. Then expected, the input
comes from a variable or an output of any
FBlock which has the same type. Hence the
array data needs to copy, or also if the
implementation is an array pointer, the pointer
is copied.

● otx: setMdlOutArrayCpy: This otx script is
called similar as otx: setMdlOutArrayCpy, if the
doutMdl is not an array, but also not a scalar
(first tested), hence it is a structured data.
Following it should copy the data or pass the
reference to the data.

1.7.7.1 create code for ctor

1.7.7.2 create code for init

1.7.7.3 call any FBlock content

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.htmlgenDinAccess-org.vishia.fbcl.fblock.Din_FBcl-java.lang.String-java.lang.String-java.lang.Appendable-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genDinAccess-org.vishia.fbcl.fblock.Din_FBcl-long:A-java.lang.String-int-java.lang.String-org.vishia.fbcl.writeFBcl.WriterCodegen.OtxWorkData-java.lang.Appendable-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#prcEvinFBlock-org.vishia.fbcl.fblock.Evout_FBcl-org.vishia.fbcl.fblock.Evout_FBcl-org.vishia.fbcl.fblock.Evin_FBcl-long:A-org.vishia.fbcl.writeFBcl.WriterCodegen.ECondCode-org.vishia.fbcl.writeFBcl.WriterCodegen.OtxWorkData-org.vishia.fbcl.fblock.Module_FBcl-java.lang.Appendable-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#prcEvinFBlock-org.vishia.fbcl.fblock.Evout_FBcl-org.vishia.fbcl.fblock.Evout_FBcl-org.vishia.fbcl.fblock.Evin_FBcl-long:A-org.vishia.fbcl.writeFBcl.WriterCodegen.ECondCode-org.vishia.fbcl.writeFBcl.WriterCodegen.OtxWorkData-org.vishia.fbcl.fblock.Module_FBcl-java.lang.Appendable-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#prcEvinFBlock-org.vishia.fbcl.fblock.Evout_FBcl-org.vishia.fbcl.fblock.Evout_FBcl-org.vishia.fbcl.fblock.Evin_FBcl-long:A-org.vishia.fbcl.writeFBcl.WriterCodegen.ECondCode-org.vishia.fbcl.writeFBcl.WriterCodegen.OtxWorkData-org.vishia.fbcl.fblock.Module_FBcl-java.lang.Appendable-

1.7 Code generation due the to event flow 59

1.7.8 Code generation for FBexpr

The possibility of expressions in
...fblock.FBexpr_FBcl (www) is flexible, see
using description in chapter html / Handling-
OFB_VishiaDiagrams.pdf: 1.7 Expressions
inside the data flow on page . General four
kinds of generation are to be distinguished:

● '.': Set components of an output variable.
That is .re, .im, or elements of a used defined
structure. The FBtype of the expression is
ExprSetStruct_UFB. The expression should have
exact one variable on output, see html /
Handling-OFB_VishiaDiagrams.pdf: 1.7.5 Set
components to a variable page. The input
names are the names of the component, it
means “re” or “im” for set complex components
or the name of elements in a struct variable.
For generation the otx-Script SetVarCmpn is used

● “]”: Set array elements of an output
variable. The FBtype of the expression is
ExprSetArray_UFB. The expression should have
exact one variable on output, see html /
Handling-OFB_VishiaDiagrams.pdf: 1.7.5 Set
components to a variable page. The names
of the input should contain the array indices
with the schema “X0” to access [0], “X2_3” to
access [2,3] of a two-dimension array,
“Xix_ix2” to access a two dimensional array
with the index variables ix and ix2. This index
variables should be accessible as variables
inside the module, adequate factors on
expressions, it are wired on the K inputs of the
expression.

● “:”: Access to components of the
connected only one input variable. See html /
Handling-OFB_VishiaDiagrams.pdf: 1.7.7
FBexpr as data access page .

● '[': Access to array elements of the
connected only one input variable. See html /
Handling-OFB_VishiaDiagrams.pdf: 1.7.7
FBexpr as data access page .

● “=$”: Generate the expression as
statement with assignments to the given

variables on the expression outputs: This is
done if all outputs (often only one output) is a
variable, not a ofpExprOut, or also if the one
ofpExprOut is not connected (but other outputs
as variables exists).

● “~&@%”: Generate in line as expression
term. This is done if one or the only one output
is an ofpExprOut and it is connected to another
input.

The characters in “…” are the output of the
FBexpr_FBcl.getAccess()(www) or just the first
character in the expr constant input able to see
in the .fbcl file (IEC61499).

For cAccess = one of “~&@%” there are

This is for scalar values or for one component
for component wise values.

The expression with an output variable to
assign is described in Error: Reference
source not found Error: Reference source
not found shown with the otx:VarV_UFB script.

The end point or just start point for back
tracking of an expression term is always an
input of a FBlock. This is for data for any
FBlock, but especially here the input of the
VarV_UFB FBlock to set the variable value. As
seen in the script Error: Reference source
not found Error: Reference source not
found, the otx-element n
<&genExprTermDin(din,'', OUT, 0)>is inserted
for the input(s). If the variable consists of more
components, here the complex parts .re and
.im, then the expression term is calculate
independent for both components. Then the
component access is given and added on each
variable access in the expression term. For
example the generated code for a longer
complex subtract term is

thiz->xdab.re = (x1.re- (thiz->h1.yabz.re
+ thiz->h3.yabz.re)) ; // xdab.V V

thiz->xdab.im = (x1.im- (thiz->h1.yabz.im
+ thiz->h3.yabz.im)) ;

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl#getAccess--
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#getAccess--
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr-DataAccess
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr-DataAccess
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr-Cmpn2Var
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr-Cmpn2Var
../pdf/Handling-OFB_VishiaDiagrams.pdf
../pdf/Handling-OFB_VishiaDiagrams.pdf
../html/Handling-OFB_VishiaDiagrams.html#Handling-FBexpr
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html

60 1 Inner Functionality of the Converter Software

This is due to the graphic Error: Reference
source not found Error: Reference source
not found page . For both component of the
complex summation one line with an
expression is created, due to two
<&genExprTermDin(din,'.re', OUT, 0)>. and
<&genExprTermDin(din,'.im', OUT, 0)>

The genExprTerm(din, …) is an operation in
WriterCodegen.#genExprTermDin (www). It is
programmed in Java and primary not adaptable
by a comprehensive generation script, but
details are adaptable.

● First is is tested whether the input is not
connected. Then either the constant value
stored in the input (Din_Fbcl#getConstant()) is
called. The numeric constant value written in a
simple form due to IEC61499 is converted in a
proper presentation for the programming
language. This is controlled by (...TODO yet
without conversion). If a constant is not given a
0 is replaced.

● If the din is connected, then
WriterCodegen.html#genValueDout(...) (www)
is called from the source of connection. See
there for further explanation.

● If the output is an expression output
without such specifications, then the inputs of
this FBexpr are summarized with its operators
and also factors on the K.. inputs and
constants. For that the oper ation
fbcl/writeFBcl/WriterCodegen#genValueExprDi
n(...) (www) is called.

1.7.8.1 What does genExprTerm(...)

● If more as one input exists, then first a
(is added, and last a) . It means the
expressions with more operands are always in
parenthesis, because anytime the operators
can have a different precedence. The
arrangement of the FBexpr in the graphic is
dete rmining.

● The operator for the input is prepar ed in
FBexpr_FBcl#setOperatorToPins(prj) (www).
This operator per din is output to the generated
code if the din has either a connection, a
constant or the ofpExprPart refers a variable.
The setOperatorToPins() checks the
admissibility of operators (do not mix multiply,
add, boolean) and removes a left side
unnecessary operator because in expressions
in all programming languages the binary
operators are between the operands. Unary
operators can follow the binary ones.

● The operator stored in
FBexpr_FBcl#setOperatorToPins(prj) (www).
which is either connected direct to an output
(then the expression term is simple, one state,
only the output variable or operation), or the
input has a constant value, or just this is
connected to an ofpExprOut pin of an
expression.

This otx-Element calls

https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueExprDin(...)
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueExprDin(...)
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueExprDin(...)
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueDout-org.vishia.fbcl.fblock.Dout_FBcl-long:A-java.lang.String-java.lang.String-org.vishia.fbcl.writeFBcl.WriterCodegen.OtxWorkData-java.lang.Appendable-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueDout-org.vishia.fbcl.fblock.Dout_FBcl-long:A-java.lang.String-java.lang.String-org.vishia.fbcl.writeFBcl.WriterCodegen.OtxWorkData-java.lang.Appendable-int-
https://vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genExprTermDin-org.vishia.fbcl.fblock.Din_FBcl-java.lang.String-java.lang.Appendable-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genExprTermDin-org.vishia.fbcl.fblock.Din_FBcl-java.lang.String-java.lang.Appendable-int-

1.8 All links to related documents 61

1.8 All links to related documents

Docu file: Approaches-OFB_VishiaDiagrams

1 Discussion about graphic presentation approaches page 2
(#GraphicLangApproaches)

1.1 GBlocks, FBlocks and FBoper - what is a FBlock page 2 (#Approach-GBlock-
FBlock)

1.2 Data and event flow page 3 (#$Label_1)
1.3 FBtype kinds and their usage (due to IEC61499) page 4 (#$Label_2)
1.4 Construction, init, run with several step times or events and shutdown page 5

(#$Label_3)
1.5 Prepare and update actions page 5 (#$Label_4)
1.5.1 Example prepare and update for boolean logic page 6 (#$Label_5)
1.5.2 State of the art, ignoring prepare and update concept page 6 (#$Label_6)
1.5.3 Example prepare and update in source text languages (C/++) page 7 (#$Label_7)
1.5.4 Example prepare and update in 4diac with MOVE-FBlock page 8 (#$Label_8)
1.5.5 Example prepare and update in Simulink page 9 (#$Label_9)
1.5.6 Example prepare and update for odg Graphic code generation (Libre Office) page

12 (#$Label_10)
1.5.7 How to associate the prepare to the update event page 14 (#$Label_11)

Docu file: Basics-OFB_VishiaDiagrams

1 Open/Libre Office for Graphical programming page 2 (#GrPrg)
2 Join FBlock Diagrams and UML-Class Diagrams page 3 (#UFBgl)
3 Approaches for the graphic, basic consideration page 4 (#Basics)
3.1 Question of sizes and grid snapping in diagram page 4 (#Basics-Sizes)
3.2 Using figures with styles (indirect formatted) for element page 8 (#Basics-Styles)
3.3 Pins page 10 (#Basics-Pins)
3.4 Connectors of LibreOffice for References between classe page 11 (#Basics-

Connectors)
3.5 Connect Points for more complex reference page 12 (#Basics-ConnectPossibl)
3.6 Diagrams with cross reference Xref page 13 (#Basics-Xref)
4 Capabilities and concepts of OFB diagrams page 14 (#OFBdiagrConc)
4.1 Graphic Blocks, pins and text fields inside a GBlock page 14 (#Capab-GBlock)
4.2 Show same FBlocks multiple times in different perspective page 14 (#Capab-

GBlockRepeated)
4.3 More as one page for the FBlock or class diagram page 15 (#Capab-Pages)
4.4 Function Block and class diagram thinking in one diagram page 16 (#Capab-

FBlockClassDiagr)
4.5 Using events instead sample times in FBlock diagrams page 18 (#Capab-Events)
4.6 Storing the textual representation of UFBgl in IEC61499 page 20 (#Capab-

IEC61499)
4.7 Source code generation from the graphic page 21 (#Capab-SrcGen)
4.8 Run and Test and Versioning page 23 (#Capab-RunTestVersions)

Docu file: Handling-OFB_VishiaDiagrams

62 1 Inner Functionality of the Converter Software

1 Handling with OFB diagrams and LibreOffice draw page 6 (#OFB-Handling)
1.1 All Kind of Elements with there style page 6 (#Capab-allStyles)
1.10 Showing processes page 58 (#Handling-ShowPrc)
1.11 Drawing and Source code generation rules page 60 (#Handling-EmbdExec)
1.11.1 Writing rules in the target language used from generated code from OFB page 60

(#Handling-EmbdExec-OperCallTargetLang)
1.11.2 Life cycle of programs in embedded control: ctor, init, step and update page 61

(#Handling-EmbdExec-ctorInitStepUpd)
1.11.3 Using events in the module pins and FBlocks, meaning in C/++ page 62

(#Handling-EmbdExec-EvPinsMdl)
1.11.4 More possibilities, definition of special events page 64 (#Handling-EmbdExec-

SpecialEvent)
1.12 Converting the graphic – source code generation page 65 (#Handling-Codegen)
1.12.1 Calling convension with code generation page 66 (#Handling-Codegen-Call)
1.12.2 Templates for code generation page 68 (#Handling-Codegen-Templ)
1.2 All styles page 8 (#Handling-AllStyles)
1.2.1 GBlock styles, ofb page 8 (#Handling-Styles-ofb)
1.2.2 Name styles, ofn page 9 (#Handling-Styles-ofn)
1.2.3 Pin styles, ofp page 9 (#Handling-Styles-ofp)
1.2.4 Connector styles, ofc page 11 (#Handling-Styles-ofc)
1.3 Texts in graphic blocks and pins page 12 (#Handling-PinTextSyntax)
1.4 Data types page 13 (#Handling-dType)
1.4.1 One letter for the base type page 13 (#Handling-dTypeChar)
1.4.2 Unspecified types page 15 (#Handling-dType-Unspec)
1.4.3 Array data type specification page 15 (#Handling-dType-Array)
1.4.4 Container type specification page 15 (#Handling-dType-Container)
1.4.5 Structured type on data flow page 17 (#Handling-dType-Dflow)
1.4.6 Data type forward and backward propagation page 18 (#Handling-dType-Propag)
1.5 One Module, Inputs and Outputs, file and page layout page 19 (#Handling-

Module)
1.5.1 Module in file organized in pages page 19 (#Handling-Module-Pages)
1.5.2 Module pins page 19 (#Handling-Module-Pins)
1.5.3 Order of pins page 21 (#Handling-Module-PinOrder)
1.5.4 The module's output page 22 (#Handling-Module-PinOut)
1.6 Possibilities of Graphic Blocks (GBlock) page 23 (#Handling-GBlock)
1.6.1 Difference between class, type and instance (“Object”) page 23 (#Handling-

GBlock-ClassTypeObj)
1.6.2 GBlocks for each one function, data – event association page 26 (#Handling-

GBlock-EvData)
1.6.3 Aggregations are corresponding to ctor or init events page 28 (#Handling-GBlock-

AggrCtorInit)
1.6.4 Expression GBlocks page 28 (#Handling-GBlock-FBexpr)
1.6.5 How are expressions presented in IEC61499? page 29 (#Handling-GBlock-

FBExprFBcl)
1.6.6 GBlocks for operation access in line in an expression - FBoper page 30

(#Handling-GBlock-oper)
1.6.7 Data Access Blocks page 33 (#Handling-GBlock_FBaccess)
1.6.8 Conditional execution with boolean FBexpr page 34 (#Handling-GBlock-ExprEv)
1.6.9 Sliced and Array FBlocks page 36 (#Handling-GBlock-Sliced)

1.8 All links to related documents 63

1.7 Expressions inside the data flow page 37 (#Handling-FBexpr)
1.7.1 Expression parts as input page 37 (#Handling-FBexpr-Inp)
1.7.10 FBexpr fblock types page 48 (#Handling-FBexpr-FBtype)
1.7.11 FBexpr capabilities compared to other FBlock graphic tools page 49 (#Handling-

FBexpr-CapabCmp)
1.7.2 More possibilities of DinExpr page 39 (#Handling-FBexpr-DinExpr)
1.7.2.1 Example with division, factors in Add expression and variables page 39

(#Handling-FBexpr-DinExprVar)
1.7.2.2 Access to elements of the input connection to use page 40 (#Handling-FBexpr-

DinAccess)
1.7.2.3 Description of all possibility, syntax/semantic of DinExpr page 40 (#Handling-

FBexpr-DinSyntax)
1.7.2.4 Some examples for DinExpr page 43 (#Handling-FBexpr-DinExmpl)
1.7.3 Any expression in FBexpr page 44 (#Handling-FBexpr-TextExpr)
1.7.4 Output possibilities page 44 (#Handling-FBexpr-Out)
1.7.5 Set components to a variable page 45 (#Handling-FBexpr-Cmpn2Var)
1.7.6 Output with ofpExprOut page 46 (#Handling-FBexpr-ofpExprOut)
1.7.7 FBexpr as data access page 46 (#Handling-FBexpr-DataAccess)
1.7.8 Type specification in expressions page 46 (#Handling-FBexpr-dType)
1.7.9 FBoper, operation for a FBlock page 47 (#Handling-FBexpr-FBoper)
1.8 Connection possibilities page 50 (#Handling-ofc)
1.8.1 Pins page 50 (#Handling-ofc-Pin)
1.8.2 Connectors page 51 (#Handling-ofc-Connector)
1.8.3 Connection points page 53 (#Handling-ofc-.ConnPoint)
1.8.4 Xref page 53 (#Handling-ofc-Xref)
1.8.5 Connections from instance variables and twice shown FBlocks page 54

(#Handling-ofc-FromVars)
1.8.6 Textual given connections page 55 (#Handling-ofc-asText)
1.9 Execution order, Event and Data flow page 55 (#Handling-evExecOrder)
2 Overview show styles of this document page 69 (#Handling-ShowStyles)

	1 Inner Functionality of the Converter Software
	1.1 Data Model data classes
	1.1.1 FBtype_FBcl
	1.1.2 FBlock_FBcl
	1.1.3 Pin_FBcl and PinType_FBcl
	1.1.3.1 PinType_FBcl
	1.1.3.2 Association between Event and Data Pins
	1.1.3.3 Associaton between Input and Output pins
	1.1.3.4 Association between prepare and update events
	1.1.3.5 Multiple pins
	1.1.3.6 Operations or Actions assigned to the Pins, code generation

	1.1.4 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl
	1.1.5 FBexpr_FBcl: FBlock for expressions, presentation in FBlock_FBcl
	1.1.6 Module with FBlocks
	1.1.7 DType_FBcl and DTypeBase_FBcl
	1.1.7.1 Using DType_FBcl
	1.1.7.2 Using DTypeBase_FBcl

	1.1.8 Event tree node

	1.2 Reading graphic files from different inputs, UFBglConv
	1.2.1 Complete a module

	1.3 Read data from LibreOffice odg files
	1.3.1 The file format of odg – content.xml
	1.3.2 Read content.xml from the odg graphic file to internal data
	1.3.3 Sorting XML data to Shapes for each page
	1.3.3.1 Gather Pages and the title
	1.3.3.2 Gather all shapes per page
	1.3.3.3 Evaluate the shapes
	1.3.3.4 Evaluating Pin texts

	1.3.4 Gather data for OdgModule page by page
	1.3.4.1 Associate the page to a module
	1.3.4.2 Aggregation to FBcl blocks via Writer

	1.3.5 Build the data in FBcl data
	1.3.6 Connect all FBcl pins due to connection of graphic pins
	1.3.7 Preparation of Expressions from odg
	1.3.7.1 createExprPins(...) createExprPins(…)
	1.3.7.2 createExprPinAndKpin

	1.4 Read data from Simulink
	1.5 Read data from IEC61499 text files (fbd)
	1.6 Complete Preparation of the module
	1.6.1 Forward and backward propagation of data types
	1.6.1.1 Forward/backward propagation of dedicated pins
	1.6.1.2 Forward and backward propagation of non dedicated pins
	1.6.1.3 Forward declaration for depending pins of a FBtype

	1.6.2 Identification of the event flow due to data flow
	1.6.2.1 UFBgl: Binding event to data on in/outputs
	1.6.2.2 Resulting evout because of evin of a FBlock
	1.6.2.3 Some Contemplation to bind data to events, event cluster
	1.6.2.4 Info in pins for data to event processing­

	1.6.3 OFB: Build the event chain
	1.6.3.1 Start on module‛s evin
	1.6.3.2 propagate one step forward
	1.6.3.3 Check all other dinDst, build listEvoutSrc
	1.6.3.4 Discard the step if not all doutSrcOther are driven by events yet
	1.6.3.5 Connect the events if all dinDstOther are driven by events using listEvoutSrc
	1.6.3.6 Put evoutDst in the queue to continue

	1.6.4 Completion of condition events

	1.7 Code generation due the to event flow
	1.7.1 Using a templates for code generation with OutTextPreparer
	1.7.2 Tracking the event chain for a module‛s operation
	1.7.2.1 What are module‛s operations, prcEvChainOperation(...)

	1.7.3 Access operation to dout, arguments
	1.7.4 Conditional events in the operation
	1.7.5 Code generation for one FBlock, one line or statement in the chain
	1.7.5.1 Generation with a FBlock specific script

	1.7.6 Expression to set elements in a variable
	1.7.7 Set the module output
	1.7.7.1 create code for ctor
	1.7.7.2 create code for init
	1.7.7.3 call any FBlock content

	1.7.8 Code generation for FBexpr
	1.7.8.1 What does genExprTerm(...)

	1.8 All links to related documents

